TPTP Problem File: CAT004-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : CAT004-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Category Theory
% Problem : X and Y epimorphisms, XY well-defined => XY epimorphism
% Version : [Sco79] axioms : Reduced > Complete.
% English : If x and y are epimorphisms and xy is well-defined, then
% xy is an epimorphism.
% Refs : [Sco79] Scott (1979), Identity and Existence in Intuitionist L
% Source : [ANL]
% Names : p4.ver3.in [ANL]
% Status : Unsatisfiable
% Rating : 0.15 v9.0.0, 0.20 v8.2.0, 0.19 v8.1.0, 0.11 v7.5.0, 0.16 v7.4.0, 0.12 v7.3.0, 0.25 v7.1.0, 0.17 v7.0.0, 0.20 v6.4.0, 0.27 v6.3.0, 0.09 v6.2.0, 0.20 v6.1.0, 0.43 v6.0.0, 0.20 v5.5.0, 0.40 v5.3.0, 0.39 v5.2.0, 0.31 v5.1.0, 0.24 v5.0.0, 0.14 v4.1.0, 0.15 v4.0.1, 0.27 v4.0.0, 0.09 v3.7.0, 0.10 v3.5.0, 0.09 v3.4.0, 0.08 v3.3.0, 0.21 v3.2.0, 0.38 v3.1.0, 0.27 v2.7.0, 0.25 v2.6.0, 0.30 v2.5.0, 0.50 v2.4.0, 0.44 v2.2.1, 0.44 v2.2.0, 0.22 v2.1.0, 0.56 v2.0.0
% Syntax : Number of clauses : 23 ( 7 unt; 2 nHn; 18 RR)
% Number of literals : 47 ( 23 equ; 22 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 37 ( 4 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Axioms simplified by Art Quaife.
%--------------------------------------------------------------------------
%----Include Scott's axioms for category theory
include('Axioms/CAT003-0.ax').
%--------------------------------------------------------------------------
cnf(assume_ab_exists,hypothesis,
there_exists(compose(a,b)) ).
cnf(cancellation_for_product1,hypothesis,
( compose(X,a) != Y
| compose(Z,a) != Y
| X = Z ) ).
cnf(cancellation_for_product2,hypothesis,
( compose(X,b) != Y
| compose(Z,b) != Y
| X = Z ) ).
cnf(assume_h_exists,hypothesis,
there_exists(h) ).
cnf(h_ab_equals_g_ab,hypothesis,
compose(h,compose(a,b)) = compose(g,compose(a,b)) ).
cnf(prove_h_equals_g,negated_conjecture,
h != g ).
%--------------------------------------------------------------------------