TPTP Problem File: CAT004-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : CAT004-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Category Theory
% Problem : X and Y epimorphisms, XY well-defined => XY epimorphism
% Version : [Qua89] (equality) axioms.
% English : If x and y are epimorphisms and xy is well-defined, then
% xy is an epimorphism.
% Refs : [Qua89] Quaife (1989), Email to L. Wos
% Source : [ANL]
% Names : p4.ver2.in [ANL]
% Status : Unsatisfiable
% Rating : 0.00 v8.1.0, 0.05 v7.5.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.09 v7.0.0, 0.08 v6.4.0, 0.14 v6.3.0, 0.20 v6.2.0, 0.30 v6.1.0, 0.09 v6.0.0, 0.00 v5.5.0, 0.12 v5.4.0, 0.00 v5.3.0, 0.20 v5.2.0, 0.00 v4.1.0, 0.11 v4.0.1, 0.12 v4.0.0, 0.14 v3.7.0, 0.29 v3.5.0, 0.14 v3.4.0, 0.33 v3.3.0, 0.22 v3.2.0, 0.11 v3.1.0, 0.20 v2.7.0, 0.38 v2.6.0, 0.33 v2.5.0, 0.50 v2.4.0, 0.25 v2.3.0, 0.50 v2.2.1, 0.33 v2.2.0, 0.50 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 14 ( 9 unt; 0 nHn; 10 RR)
% Number of literals : 26 ( 26 equ; 13 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 17 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----Include Quaife's axioms for category theory
include('Axioms/CAT002-0.ax').
%--------------------------------------------------------------------------
cnf(epimorphism1,hypothesis,
( codomain(a) != domain(X)
| compose(a,X) != Y
| codomain(a) != domain(Z)
| compose(a,Z) != Y
| X = Z ) ).
cnf(epimorphism2,hypothesis,
( codomain(b) != domain(X)
| compose(b,X) != Y
| codomain(b) != domain(Z)
| compose(b,Z) != Y
| X = Z ) ).
cnf(codomain_of_a_equals_domain_of_b,hypothesis,
codomain(a) = domain(b) ).
cnf(codomain_of_ab_equals_domain_of_h,hypothesis,
codomain(compose(a,b)) = domain(h) ).
cnf(codomain_of_ab_equals_domain_of_g,hypothesis,
codomain(compose(a,b)) = domain(g) ).
cnf(ab_h_equals_ab_g,hypothesis,
compose(compose(a,b),h) = compose(compose(a,b),g) ).
cnf(prove_h_equals_g,negated_conjecture,
h != g ).
%--------------------------------------------------------------------------