TPTP Problem File: CAT002-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CAT002-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : X and Y monomorphisms, XY well-defined => XY monomorphism
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Satisfiable
% Rating : 0.29 v9.0.0, 0.11 v8.2.0, 0.00 v7.5.0, 0.25 v7.3.0
% Syntax : Number of clauses : 15 ( 15 unt; 0 nHn; 5 RR)
% Number of literals : 15 ( 15 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-4 aty)
% Number of variables : 20 ( 1 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : Converted from CAT002-2 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(codomain_of_domain_is_domain,axiom,
codomain(domain(X)) = domain(X) ).
cnf(domain_of_codomain_is_codomain,axiom,
domain(codomain(X)) = codomain(X) ).
cnf(domain_composition,axiom,
compose(domain(X),X) = X ).
cnf(codomain_composition,axiom,
compose(X,codomain(X)) = X ).
cnf(codomain_domain1,axiom,
ifeq(codomain(X),domain(Y),domain(compose(X,Y)),domain(X)) = domain(X) ).
cnf(codomain_domain2,axiom,
ifeq(codomain(X),domain(Y),codomain(compose(X,Y)),codomain(Y)) = codomain(Y) ).
cnf(star_property,axiom,
ifeq(codomain(Y),domain(Z),ifeq(codomain(X),domain(Y),compose(X,compose(Y,Z)),compose(compose(X,Y),Z)),compose(compose(X,Y),Z)) = compose(compose(X,Y),Z) ).
cnf(codomain_of_a_equals_domain_of_b,hypothesis,
codomain(a) = domain(b) ).
cnf(monomorphism1,hypothesis,
ifeq(codomain(X),domain(a),ifeq(codomain(Z),domain(b),ifeq(compose(Z,a),Y,ifeq(compose(X,a),Y,X,Z),Z),Z),Z) = Z ).
cnf(monomorphism2,hypothesis,
ifeq(codomain(X),domain(a),ifeq(codomain(Z),domain(b),ifeq(compose(Z,b),Y,ifeq(compose(X,b),Y,X,Z),Z),Z),Z) = Z ).
cnf(codomain_of_h_equals_domain_of_ab,hypothesis,
codomain(h) = domain(compose(a,b)) ).
cnf(codomain_of_g_equals_domain_of_ab,hypothesis,
codomain(g) = domain(compose(a,b)) ).
cnf(h_ab_equals_g_ab,hypothesis,
compose(h,compose(a,b)) = compose(g,compose(a,b)) ).
cnf(prove_h_equals_g,negated_conjecture,
h != g ).
%------------------------------------------------------------------------------