TPTP Problem File: BOO039-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : BOO039-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Boolean Algebra
% Problem : Sh-1 is a single axiom for Boolean algebra
% Version : [EF+02] axioms.
% English : Show that equation Sh-1 is a single axiom for Boolean algebra in
% terms of the Sheffer stroke by deriving the Meredith 2-basis.
% Refs : [EF+02] Ernst et al. (2002), More First-order Test Problems in
% : [MV+02] McCune et al. (2002), Short Single Axioms for Boolean
% Source : [EF+02]
% Names : sheffer-sh1 [EF+02]
% Status : Unsatisfiable
% Rating : 0.80 v8.2.0, 0.75 v8.1.0, 0.79 v7.5.0, 0.82 v7.3.0, 0.85 v7.2.0, 0.83 v7.1.0, 0.73 v7.0.0, 0.77 v6.4.0, 0.79 v6.3.0, 0.70 v6.2.0, 0.80 v6.1.0, 0.82 v6.0.0, 0.71 v5.5.0, 0.88 v5.4.0, 1.00 v4.0.0, 0.86 v3.7.0, 0.71 v3.4.0, 0.83 v3.3.0, 0.78 v3.1.0, 1.00 v2.6.0, 0.80 v2.5.0
% Syntax : Number of clauses : 2 ( 1 unt; 0 nHn; 1 RR)
% Number of literals : 3 ( 3 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 3 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----Sh-1
cnf(sh_1,axiom,
nand(nand(A,nand(nand(B,A),A)),nand(B,nand(C,A))) = B ).
%----Denial of Meredith 2-basis
cnf(prove_meredith_2_basis,negated_conjecture,
( nand(nand(a,a),nand(b,a)) != a
| nand(a,nand(b,nand(a,c))) != nand(nand(nand(c,b),b),a) ) ).
%--------------------------------------------------------------------------