TPTP Problem File: BOO033-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : BOO033-1 : TPTP v9.0.0. Released v2.2.0.
% Domain : Boolean Algebra
% Problem : Independence of a system of Boolean algebra.
% Version : [MP96] (equality) axioms : Especial.
% English : This is part of a proof that a self-dual 3-basis for
% Boolean algebra is independent.
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : DUAL-BA-10 [MP96]
% Status : Satisfiable
% Rating : 0.43 v9.0.0, 0.22 v8.2.0, 0.00 v8.1.0, 0.25 v7.5.0, 0.00 v6.1.0, 0.20 v6.0.0, 0.00 v5.5.0, 0.20 v5.4.0, 0.50 v5.3.0, 0.67 v5.2.0, 0.33 v3.2.0, 0.67 v3.1.0, 0.33 v2.4.0, 0.67 v2.3.0, 1.00 v2.2.1
% Syntax : Number of clauses : 8 ( 8 unt; 0 nHn; 1 RR)
% Number of literals : 8 ( 8 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 17 ( 5 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : There is a model of size 2.
%--------------------------------------------------------------------------
%----Self-dual distributivity:
cnf(distributivity,axiom,
add(multiply(X,Y),add(multiply(Y,Z),multiply(Z,X))) = multiply(add(X,Y),multiply(add(Y,Z),add(Z,X))) ).
%----3 properties of Boolean algebra and the corresponding duals.
cnf(l1,axiom,
add(X,multiply(Y,multiply(X,Z))) = X ).
cnf(l3,axiom,
add(add(multiply(X,Y),multiply(Y,Z)),Y) = Y ).
cnf(property3,axiom,
multiply(add(X,inverse(X)),Y) = Y ).
%----Majority polynomials:
cnf(majority1,axiom,
multiply(add(multiply(X,Y),X),add(X,Y)) = X ).
cnf(majority2,axiom,
multiply(add(multiply(X,X),Y),add(X,X)) = X ).
cnf(majority3,axiom,
multiply(add(multiply(X,Y),Y),add(X,Y)) = Y ).
%----A simple propery of Boolean Algebra fails to hold.
cnf(prove_inverse_involution,negated_conjecture,
inverse(inverse(a)) != a ).
%--------------------------------------------------------------------------