TPTP Problem File: BOO022-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : BOO022-1 : TPTP v9.0.0. Released v2.2.0.
% Domain : Boolean Algebra
% Problem : A Basis for Boolean Algebra
% Version : [MP96] (equality) axioms.
% English : This theorem starts with a (self-dual independent) 6-basis
% for Boolean algebra and derives associativity of product.
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : DUAL-BA-1 [MP96]
% Status : Unsatisfiable
% Rating : 0.09 v9.0.0, 0.05 v8.2.0, 0.12 v8.1.0, 0.25 v7.5.0, 0.17 v7.4.0, 0.26 v7.1.0, 0.17 v7.0.0, 0.21 v6.4.0, 0.32 v6.3.0, 0.29 v6.1.0, 0.31 v6.0.0, 0.48 v5.5.0, 0.47 v5.4.0, 0.33 v5.2.0, 0.36 v5.1.0, 0.27 v5.0.0, 0.21 v4.1.0, 0.09 v4.0.1, 0.14 v4.0.0, 0.15 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.14 v3.2.0, 0.07 v3.1.0, 0.22 v2.7.0, 0.00 v2.2.1
% Syntax : Number of clauses : 7 ( 7 unt; 0 nHn; 1 RR)
% Number of literals : 7 ( 7 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 12 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : The other part of this problem is to prove commutativity.
%--------------------------------------------------------------------------
%----Boolean Algebra:
cnf(multiply_add,axiom,
multiply(add(X,Y),Y) = Y ).
cnf(multiply_add_property,axiom,
multiply(X,add(Y,Z)) = add(multiply(Y,X),multiply(Z,X)) ).
cnf(additive_inverse,axiom,
add(X,inverse(X)) = n1 ).
cnf(add_multiply,axiom,
add(multiply(X,Y),Y) = Y ).
cnf(add_multiply_property,axiom,
add(X,multiply(Y,Z)) = multiply(add(Y,X),add(Z,X)) ).
cnf(multiplicative_inverse,axiom,
multiply(X,inverse(X)) = n0 ).
%----Denial of conclusion:
cnf(prove_associativity_of_multiply,negated_conjecture,
multiply(multiply(a,b),c) != multiply(a,multiply(b,c)) ).
%--------------------------------------------------------------------------