TPTP Problem File: BOO019-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : BOO019-1 : TPTP v9.0.0. Released v1.2.0.
% Domain : Boolean Algebra (Ternary)
% Problem : Prove the independance of Ternary Boolean algebra axiom
% Version : Especial.
% English :
% Refs : [Win82] Winker (1982), Generation and Verification of Finite M
% : [BCP94] Bourely et al. (1994), A Method for Building Models Au
% : [Pel98] Peltier (1998), A New Method for Automated Finite Mode
% Source : [BCP94]
% Names : A1 [Win82]
% : Example 4 [BCP94]
% : 4.2.1 [Pel98]
% Status : Satisfiable
% Rating : 0.43 v9.0.0, 0.22 v8.2.0, 0.00 v8.1.0, 0.25 v7.5.0, 0.00 v6.2.0, 0.17 v6.1.0, 0.40 v6.0.0, 0.20 v5.5.0, 0.40 v5.4.0, 0.50 v5.3.0, 0.67 v5.2.0, 0.33 v3.2.0, 0.67 v3.1.0, 0.33 v2.4.0, 0.67 v2.2.1, 0.75 v2.2.0, 0.67 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 1 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-3 aty)
% Number of variables : 11 ( 1 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : Thought to be satisfiable.
%--------------------------------------------------------------------------
cnf(associativity,axiom,
multiply(multiply(V,W,X),Y,multiply(V,W,Z)) = multiply(V,W,multiply(X,Y,Z)) ).
cnf(ternary_multiply_2,axiom,
multiply(X,X,Y) = X ).
cnf(left_inverse,axiom,
multiply(inverse(Y),Y,X) = X ).
cnf(right_inverse,axiom,
multiply(X,Y,inverse(Y)) = X ).
cnf(prove_ternary_multiply_1_independant,negated_conjecture,
multiply(y,x,x) != x ).
%--------------------------------------------------------------------------