TPTP Problem File: BOO013-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : BOO013-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Boolean Algebra
% Problem : The inverse of X is unique
% Version : [MOW76] axioms : Augmented.
% English :
% Refs : [Whi61] Whitesitt (1961), Boolean Algebra and Its Applications
% : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [MOW76]
% Names : B9 [MOW76]
% : prob9.ver1 [ANL]
% Status : Unsatisfiable
% Rating : 0.00 v6.0.0, 0.33 v5.5.0, 0.38 v5.4.0, 0.33 v5.3.0, 0.42 v5.2.0, 0.38 v5.1.0, 0.29 v5.0.0, 0.00 v4.0.0, 0.17 v3.5.0, 0.00 v3.1.0, 0.11 v2.7.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.14 v2.1.0, 0.20 v2.0.0
% Syntax : Number of clauses : 28 ( 16 unt; 0 nHn; 17 RR)
% Number of literals : 66 ( 4 equ; 39 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 83 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : Inverse is an involution is added as a lemma.
%--------------------------------------------------------------------------
%----Include boolean algebra axioms
include('Axioms/BOO002-0.ax').
%--------------------------------------------------------------------------
cnf(inverse_is_an_involution,axiom,
inverse(inverse(X)) = X ).
cnf(sum_to_multiplicative_identity1,negated_conjecture,
sum(x,y,multiplicative_identity) ).
cnf(sum_to_multiplicative_identity2,negated_conjecture,
sum(x,z,multiplicative_identity) ).
cnf(product_to_additive_identity1,negated_conjecture,
product(x,y,additive_identity) ).
cnf(product_to_additive_identity2,negated_conjecture,
product(x,z,additive_identity) ).
cnf(prove_both_inverse_are_equal,negated_conjecture,
y != z ).
%--------------------------------------------------------------------------