TPTP Problem File: BOO012-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : BOO012-3 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Boolean Algebra
% Problem : Inverse is an involution
% Version : [MOW76] axioms : Augmented.
% English :
% Refs : [Whi61] Whitesitt (1961), Boolean Algebra and Its Applications
% : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [MOW76]
% Names : B8 [MOW76]
% : prob8.ver1 [ANL]
% Status : Unsatisfiable
% Rating : 0.08 v9.0.0, 0.06 v8.2.0, 0.17 v8.1.0, 0.11 v7.5.0, 0.20 v7.4.0, 0.11 v7.3.0, 0.00 v6.0.0, 0.44 v5.5.0, 0.56 v5.4.0, 0.60 v5.3.0, 0.75 v5.2.0, 0.50 v5.1.0, 0.43 v5.0.0, 0.14 v4.1.0, 0.11 v4.0.1, 0.17 v4.0.0, 0.33 v3.5.0, 0.00 v3.1.0, 0.22 v2.7.0, 0.00 v2.4.0, 0.17 v2.3.0, 0.33 v2.2.1, 0.62 v2.2.0, 0.50 v2.1.0, 0.33 v2.0.0
% Syntax : Number of clauses : 35 ( 17 unt; 0 nHn; 19 RR)
% Number of literals : 87 ( 3 equ; 53 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 120 ( 6 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
% Bugfixes : v1.2.1 - Clause x_plus_multiplicative_identity fixed.
%--------------------------------------------------------------------------
%----Include boolean algebra axioms
include('Axioms/BOO002-0.ax').
%--------------------------------------------------------------------------
cnf(x_plus_x_is_x,axiom,
sum(X,X,X) ).
cnf(x_times_x_is_x,axiom,
product(X,X,X) ).
cnf(x_plus_multiplicative_identity,axiom,
sum(X,multiplicative_identity,multiplicative_identity) ).
cnf(x_times_additive_identity,axiom,
product(X,additive_identity,additive_identity) ).
cnf(sum_product_dual1,axiom,
( ~ product(X,Y,Z)
| sum(X,Z,X) ) ).
cnf(sum_product_dual2,axiom,
( ~ sum(X,Y,Z)
| product(X,Z,X) ) ).
cnf(sum_and_multiply,axiom,
sum(X,multiply(X,Y),X) ).
cnf(product_and_add,axiom,
product(X,add(X,Y),X) ).
cnf(associaticity_of_sum1,axiom,
( ~ sum(X,Y,X_plus_Y)
| ~ sum(Y,Z,Y_plus_Z)
| ~ sum(X,Y_plus_Z,X_plus_Y_plus_Z)
| sum(X_plus_Y,Z,X_plus_Y_plus_Z) ) ).
cnf(associaticity_of_sum2,axiom,
( ~ sum(X,Y,X_plus_Y)
| ~ sum(Y,Z,Y_plus_Z)
| sum(X_plus_Y,Z,X_plus_Y_plus_Z)
| ~ sum(X,Y_plus_Z,X_plus_Y_plus_Z) ) ).
cnf(associaticity_of_product1,axiom,
( ~ product(X,Y,X_times_Y)
| ~ product(Y,Z,Y_times_Z)
| ~ product(X,Y_times_Z,X_times_Y_times_Z)
| product(X_times_Y,Z,X_times_Y_times_Z) ) ).
cnf(associaticity_of_product2,axiom,
( ~ product(X,Y,X_times_Y)
| ~ product(Y,Z,Y_times_Z)
| product(X_times_Y,Z,X_times_Y_times_Z)
| ~ product(X,Y_times_Z,X_times_Y_times_Z) ) ).
cnf(prove_inverse_is_an_involution,negated_conjecture,
inverse(inverse(x)) != x ).
%--------------------------------------------------------------------------