TPTP Problem File: BOO008-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : BOO008-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : Sum is associative ( (X + Y) + Z = X + (Y + Z) )
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Satisfiable
% Rating : 0.43 v9.0.0, 0.22 v8.2.0, 0.00 v8.1.0, 0.25 v7.5.0
% Syntax : Number of clauses : 22 ( 22 unt; 0 nHn; 5 RR)
% Number of literals : 22 ( 22 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 16 ( 16 usr; 10 con; 0-4 aty)
% Number of variables : 49 ( 1 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : Converted from BOO008-3 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(closure_of_addition,axiom,
sum(X,Y,add(X,Y)) = true ).
cnf(closure_of_multiplication,axiom,
product(X,Y,multiply(X,Y)) = true ).
cnf(commutativity_of_addition,axiom,
ifeq(sum(X,Y,Z),true,sum(Y,X,Z),true) = true ).
cnf(commutativity_of_multiplication,axiom,
ifeq(product(X,Y,Z),true,product(Y,X,Z),true) = true ).
cnf(additive_identity1,axiom,
sum(additive_identity,X,X) = true ).
cnf(additive_identity2,axiom,
sum(X,additive_identity,X) = true ).
cnf(multiplicative_identity1,axiom,
sum(multiplicative_identity,X,X) = true ).
cnf(multiplicative_identity2,axiom,
sum(X,multiplicative_identity,X) = true ).
cnf(distributivity1,axiom,
ifeq(product(X,V3,V4),true,ifeq(product(X,Z,V2),true,ifeq(product(X,Y,V1),true,ifeq(sum(Y,Z,V3),true,sum(V1,V2,V4),true),true),true),true) = true ).
cnf(distributivity2,axiom,
ifeq(product(X,Z,V2),true,ifeq(product(X,Y,V1),true,ifeq(sum(V1,V2,V4),true,ifeq(sum(Y,Z,V3),true,product(X,V3,V4),true),true),true),true) = true ).
cnf(distributivity5,axiom,
ifeq(product(Y,Z,V3),true,ifeq(sum(X,V3,V4),true,ifeq(sum(X,Z,V2),true,ifeq(sum(X,Y,V1),true,product(V1,V2,V4),true),true),true),true) = true ).
cnf(distributivity6,axiom,
ifeq(product(V1,V2,V4),true,ifeq(product(Y,Z,V3),true,ifeq(sum(X,Z,V2),true,ifeq(sum(X,Y,V1),true,sum(X,V3,V4),true),true),true),true) = true ).
cnf(additive_inverse1,axiom,
sum(inverse(X),X,multiplicative_identity) = true ).
cnf(additive_inverse2,axiom,
sum(X,inverse(X),multiplicative_identity) = true ).
cnf(multiplicative_inverse1,axiom,
product(inverse(X),X,additive_identity) = true ).
cnf(multiplicative_inverse2,axiom,
product(X,inverse(X),additive_identity) = true ).
cnf(y_plus_z,hypothesis,
sum(y,z,y_plus_z) = true ).
cnf(x_plus__y_plus_z,hypothesis,
sum(x,y_plus_z,x__plus_y_plus_z) = true ).
cnf(x_plus_y,hypothesis,
sum(x,y,x_plus_y) = true ).
cnf(x_plus_y__plus_z,hypothesis,
sum(x_plus_y,z,x_plus_y__plus_z) = true ).
cnf(prove_equality,negated_conjecture,
x__plus_y_plus_z != x_plus_y__plus_z ).
%------------------------------------------------------------------------------