TPTP Problem File: BOO002-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : BOO002-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Boolean Algebra (Ternary)
% Problem : In B3 algebra, X * X^-1 * Y = Y
% Version : [OTTER] (equality) axioms : Reduced > Incomplete.
% English :
% Refs : [LO85] Lusk & Overbeek (1985), Reasoning about Equality
% : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
% : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
% : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
% : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
% Source : [Ove90]
% Names : Problem 5 [LO85]
% : CADE-11 Competition Eq-3 [Ove90]
% : THEOREM EQ-3 [LM93]
% : PROBLEM 3 [Zha93]
% Status : Unsatisfiable
% Rating : 0.14 v8.2.0, 0.12 v8.1.0, 0.20 v7.5.0, 0.17 v7.4.0, 0.22 v7.3.0, 0.16 v7.1.0, 0.11 v6.3.0, 0.12 v6.2.0, 0.14 v6.1.0, 0.25 v6.0.0, 0.38 v5.5.0, 0.37 v5.4.0, 0.20 v5.3.0, 0.08 v5.2.0, 0.14 v5.1.0, 0.20 v5.0.0, 0.14 v4.1.0, 0.18 v4.0.1, 0.14 v4.0.0, 0.08 v3.7.0, 0.00 v3.3.0, 0.07 v3.1.0, 0.00 v2.7.0, 0.09 v2.6.0, 0.00 v2.2.1, 0.33 v2.2.0, 0.43 v2.1.0, 0.38 v2.0.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 1 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-3 aty)
% Number of variables : 11 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Don't include ternary Boolean algebra axioms, as one is omitted
% include('axioms/BOO001-0.ax').
%--------------------------------------------------------------------------
cnf(associativity,axiom,
multiply(multiply(V,W,X),Y,multiply(V,W,Z)) = multiply(V,W,multiply(X,Y,Z)) ).
cnf(ternary_multiply_1,axiom,
multiply(Y,X,X) = X ).
cnf(ternary_multiply_2,axiom,
multiply(X,X,Y) = X ).
cnf(left_inverse,axiom,
multiply(inverse(Y),Y,X) = X ).
%----This axiom is omitted
% input_clause(right_inverse,axiom,
% [++equal(multiply(X,Y,inverse(Y)),X)]).
cnf(prove_equation,negated_conjecture,
multiply(a,inverse(a),b) != b ).
%--------------------------------------------------------------------------