TPTP Problem File: ARI762_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI762_1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Arithmetic
% Problem : Maximal function
% Version : Especial.
% English :
% Refs : [KK+16] Kotelnikov et al. (2016), The Vampire and the FOOL
% : [Kot18] Kotelnikov (2018), Email to Geoff Sutcliffe
% Source : [Kot18]
% Names : if-then-else [Kot18]
% Status : Theorem
% Rating : ? v9.1.0
% Syntax : Number of formulae : 3 ( 1 unt; 1 typ; 0 def)
% Number of atoms : 5 ( 2 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 0 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of FOOLs : 1 ( 1 fml; 0 var)
% Number of X terms : 2 ( 0 []; 2 ite; 0 let)
% Number arithmetic : 7 ( 3 atm; 0 fun; 0 num; 4 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 2 ( 1 >; 1 *; 0 +; 0 <<)
% Number of predicates : 3 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 4 ( 4 !; 0 ?; 4 :)
% SPC : TX0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(max,type,
max: ( $int * $int ) > $int ).
tff(max_definition,axiom,
! [X: $int,Y: $int] :
( max(X,Y) = $ite($less(X,Y),Y,X) ) ).
tff(max_conjecture,conjecture,
! [X: $int,Y: $int] :
$ite(max(X,Y) = X,$greatereq(X,Y),$greatereq(Y,X)) ).
%------------------------------------------------------------------------------