TPTP Problem File: ARI699_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI699_1 : TPTP v9.0.0. Released v6.3.0.
% Domain : Arithmetic
% Problem : Nonlinear inequality reasoning
% Version : Especial.
% English :
% Refs : [BHS07] Beckert et al. (2007), Verification of Object-Oriented
% : [Rue14] Ruemmer (2014), Email to Geoff Sutcliffe
% Source : [Rue14]
% Names : simplify22.pri [BHS07]
% : poly_simplify22.p [Rue14]
% Status : Unsatisfiable
% Rating : 0.20 v9.0.0, 0.00 v8.2.0, 0.25 v8.1.0, 0.33 v7.3.0, 0.25 v7.1.0, 0.33 v7.0.0, 0.00 v6.4.0, 1.00 v6.3.0
% Syntax : Number of formulae : 7 ( 4 unt; 3 typ; 0 def)
% Number of atoms : 4 ( 1 equ)
% Maximal formula atoms : 1 ( 0 avg)
% Number of connectives : 0 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number arithmetic : 15 ( 3 atm; 7 fun; 5 num; 0 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 3 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 3 usr; 6 con; 0-2 aty)
% Number of variables : 0 ( 0 !; 0 ?; 0 :)
% SPC : TF0_UNS_EQU_ARI
% Comments : KeY arithmetic regression test, http://www.key-project.org
%------------------------------------------------------------------------------
tff(z_type,type,
z: $int ).
tff(x_type,type,
x: $int ).
tff(y_type,type,
y: $int ).
tff(ineq1,axiom,
$greater(x,0) ).
tff(ineq2,axiom,
$greater(y,0) ).
tff(ineq3,axiom,
$lesseq(0,$sum($product($product(z,z),x),$product(-1,$product(y,x)))) ).
tff(eq,axiom,
$product($product(2,z),z) = y ).
%------------------------------------------------------------------------------