TPTP Problem File: ARI698_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI698_1 : TPTP v9.0.0. Released v6.3.0.
% Domain : Arithmetic
% Problem : Solve simple system of linear equations, with parameter N
% Version : Especial.
% English :
% Refs : [BHS07] Beckert et al. (2007), Verification of Object-Oriented
% : [Rue14] Ruemmer (2014), Email to Geoff Sutcliffe
% Source : [Rue14]
% Names : simplify21.pri [BHS07]
% : poly_simplify21.p [Rue14]
% Status : Theorem
% Rating : 0.12 v7.5.0, 0.20 v7.4.0, 0.12 v7.3.0, 0.17 v7.0.0, 0.14 v6.4.0, 0.00 v6.3.0
% Syntax : Number of formulae : 19 ( 11 unt; 7 typ; 0 def)
% Number of atoms : 17 ( 17 equ)
% Maximal formula atoms : 6 ( 0 avg)
% Number of connectives : 5 ( 0 ~; 0 |; 5 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number arithmetic : 139 ( 0 atm; 93 fun; 46 num; 0 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 13 ( 7 usr; 10 con; 0-2 aty)
% Number of variables : 0 ( 0 !; 0 ?; 0 :)
% SPC : TF0_THM_EQU_ARI
% Comments : KeY arithmetic regression test, http://www.key-project.org
%------------------------------------------------------------------------------
tff(x_type,type,
n: $int ).
tff(x6_type,type,
x6: $int ).
tff(x5_type,type,
x5: $int ).
tff(x4_type,type,
x4: $int ).
tff(x3_type,type,
x3: $int ).
tff(x2_type,type,
x2: $int ).
tff(x1_type,type,
x1: $int ).
tff(eq1,axiom,
n = 1000 ).
tff(eq2,axiom,
$sum($sum($sum($sum($sum($product(1,x6),$product(n,x5)),$product(n,x4)),$product(n,x3)),$product(n,x2)),$product(n,x1)) = 0 ).
tff(eq3,axiom,
$difference($difference($difference($difference($difference($product(n,x6),x5),x4),x3),x2),x1) = 0 ).
tff(eq4,axiom,
$difference($difference($difference($difference($sum($product(n,x6),$product(1,x5)),x4),x3),x2),x1) = 0 ).
tff(eq5,axiom,
$sum($sum($sum($sum($sum($product(n,x6),$product(0,x5)),$product(1,x4)),$product(1,x3)),$product(1,x2)),$product(1,x1)) = 0 ).
tff(eq6,axiom,
$sum($sum($sum($difference($sum($product(n,x6),$product(0,x5)),x4),$product(1,x3)),$product(1,x2)),$product(1,x1)) = 0 ).
tff(eq7,axiom,
$difference($difference($difference($sum($sum($product(n,x6),$product(0,x5)),$product(0,x4)),x3),x2),x1) = 0 ).
tff(eq8,axiom,
$difference($difference($sum($sum($sum($product(n,x6),$product(0,x5)),$product(0,x4)),$product(1,x3)),x2),x1) = 0 ).
tff(eq9,axiom,
$sum($sum($sum($sum($sum($product(n,x6),$product(0,x5)),$product(0,x4)),$product(0,x3)),$product(1,x2)),$product(1,x1)) = 0 ).
tff(eq10,axiom,
$sum($difference($sum($sum($sum($product(n,x6),$product(0,x5)),$product(0,x4)),$product(0,x3)),x2),$product(1,x1)) = 0 ).
tff(eq11,axiom,
$difference($sum($sum($sum($sum($product(n,x6),$product(0,x5)),$product(0,x4)),$product(0,x3)),$product(0,x2)),x1) = 0 ).
tff(conj,conjecture,
( ( x6 = 0 )
& ( x5 = 0 )
& ( x4 = 0 )
& ( x3 = 0 )
& ( x2 = 0 )
& ( x1 = 0 ) ) ).
%------------------------------------------------------------------------------