TPTP Problem File: ARI653_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI653_1 : TPTP v9.0.0. Released v6.3.0.
% Domain : Arithmetic
% Problem : Prove that 5*a >= 1, 7*a <= 6 are unsat
% Version : Especial.
% English :
% Refs : [BHS07] Beckert et al. (2007), Verification of Object-Oriented
% : [Rue14] Ruemmer (2014), Email to Geoff Sutcliffe
% Source : [Rue14]
% Names : inequations2.pri [BHS07]
% : inequations2.p [Rue14]
% Status : Unsatisfiable
% Rating : 0.00 v6.3.0
% Syntax : Number of formulae : 3 ( 2 unt; 1 typ; 0 def)
% Number of atoms : 2 ( 0 equ)
% Maximal formula atoms : 1 ( 0 avg)
% Number of connectives : 0 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 8 ( 2 atm; 2 fun; 4 num; 0 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 2 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 1 usr; 5 con; 0-2 aty)
% Number of variables : 0 ( 0 !; 0 ?; 0 :)
% SPC : TF0_UNS_NEQ_ARI
% Comments : KeY arithmetic regression test, http://www.key-project.org
%------------------------------------------------------------------------------
tff(a_type,type,
a: $int ).
tff(conj,axiom,
$greatereq(6,$product(7,a)) ).
tff(conj_001,axiom,
$lesseq(1,$product(5,a)) ).
%------------------------------------------------------------------------------