TPTP Problem File: ARI626_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI626_1 : TPTP v9.0.0. Released v6.1.0.
% Domain : Arithmetic
% Problem : Overflow checking on the integers
% Version : Biased.
% English : A simple test that should go over 2^64 (more than machine
% integers) and therefore detect whether the prover uses arbitrary
% precision arithmetic.
% Refs : [Cru14] Cruanes (2014), Email to Geoff Sutcliffe
% Source : [Cru14]
% Names :
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.12 v8.2.0, 0.25 v7.5.0, 0.30 v7.4.0, 0.38 v7.3.0, 0.33 v7.0.0, 0.43 v6.4.0, 0.33 v6.3.0, 0.43 v6.2.0, 0.38 v6.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 typ; 0 def)
% Number of atoms : 2 ( 1 equ)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 1 ( 0 ~; 0 |; 1 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 3 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 6 ( 1 atm; 1 fun; 3 num; 1 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 2 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 3 ( 0 usr; 2 con; 0-2 aty)
% Number of variables : 1 ( 0 !; 1 ?; 1 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(the,conjecture,
? [X: $int] :
( ( X = $sum(18446744073709551616,18446744073709551616) )
& $greater(X,0) ) ).
%------------------------------------------------------------------------------