TPTP Problem File: ARI623_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI623_1 : TPTP v9.0.0. Bugfixed v5.2.0.
% Domain : Arithmetic
% Problem : There is no strictly mon fct from $rat or $real to a non-dense set
% Version : Especial.
% English :
% Refs : [Wal10] Waldmann (2010), Email to Geoff Sutcliffe
% Source : [Wal10]
% Names :
% Status : Theorem
% Rating : 1.00 v5.2.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 2 ( 0 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 2 ( 1 ~; 0 |; 0 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 5 avg)
% Maximal term depth : 3 ( 2 avg)
% Number arithmetic : 6 ( 2 atm; 1 fun; 1 num; 2 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 1 ( 1 >; 0 *; 0 +; 0 <<)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 3 ( 1 usr; 1 con; 0-2 aty)
% Number of variables : 2 ( 2 !; 0 ?; 2 :)
% SPC : TF0_THM_NEQ_ARI
% Comments : Also a theorem for $real (but countersatisfiable in ordered
% divisible abelian groups).
% Bugfixes : v5.2.0 - Made numbers into rationals.
%------------------------------------------------------------------------------
tff(f_type,type,
f: $rat > $rat ).
tff(not_ex_mon_mapping_rat_to_nondense,conjecture,
~ ! [X: $rat,Y: $rat] :
( $greater(X,Y)
=> $greater(f(X),$sum(f(Y),1/1)) ) ).
%------------------------------------------------------------------------------