TPTP Problem File: ARI616_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI616_1 : TPTP v9.0.0. Released v5.1.0.
% Domain : Arithmetic
% Problem : If intervals intersect, then sum_of_radii >= distance_of_centers
% Version : Especial.
% English :
% Refs : [Wal10] Waldmann (2010), Email to Geoff Sutcliffe
% Source : [Wal10]
% Names :
% Status : Theorem
% Rating : 0.00 v7.3.0, 0.12 v7.1.0, 0.00 v6.2.0, 0.40 v6.1.0, 0.44 v6.0.0, 0.50 v5.3.0, 0.57 v5.2.0, 0.60 v5.1.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 6 ( 0 equ)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 5 ( 0 ~; 0 |; 2 &)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 9 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 17 ( 3 atm; 6 fun; 0 num; 8 var)
% Number of types : 2 ( 0 usr; 1 ari)
% Number of type conns : 3 ( 1 >; 2 *; 0 +; 0 <<)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-3 aty)
% Number of functors : 2 ( 0 usr; 0 con; 1-2 aty)
% Number of variables : 8 ( 7 !; 1 ?; 8 :)
% SPC : TF0_THM_NEQ_ARI
% Comments :
%------------------------------------------------------------------------------
tff(p_type,type,
p: ( $int * $int * $int ) > $o ).
tff(sum_of_radii_gt_distance_of_centers,conjecture,
( ! [X: $int,Y: $int,Z: $int] :
( ( $lesseq($sum(Y,$uminus(Z)),X)
& $lesseq(X,$sum(Y,Z)) )
<=> p(X,Y,Z) )
=> ! [Y1: $int,Z1: $int,Y2: $int,Z2: $int] :
( ? [X: $int] :
( p(X,Y1,Z1)
& p(X,Y2,Z2) )
=> $lesseq($sum(Y1,$uminus(Y2)),$sum(Z1,Z2)) ) ) ).
%------------------------------------------------------------------------------