TPTP Problem File: ARI610_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI610_1 : TPTP v9.0.0. Released v5.1.0.
% Domain : Arithmetic
% Problem : For mon. f, f(b)<f(a) => b<a => b<=a => 0<=a-b => f(0)<=f(a-b)
% Version : Especial.
% English :
% Refs : [Wal10] Waldmann (2010), Email to Geoff Sutcliffe
% Source : [Wal10]
% Names :
% Status : Theorem
% Rating : 0.00 v7.3.0, 0.12 v7.1.0, 0.00 v6.2.0, 0.20 v6.1.0, 0.33 v6.0.0, 0.38 v5.4.0, 0.62 v5.3.0, 0.71 v5.2.0, 0.80 v5.1.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 4 ( 0 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 1 &)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 6 avg)
% Maximal term depth : 4 ( 2 avg)
% Number arithmetic : 9 ( 4 atm; 2 fun; 1 num; 2 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 1 ( 1 >; 0 *; 0 +; 0 <<)
% Number of predicates : 2 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 3 usr; 3 con; 0-2 aty)
% Number of variables : 2 ( 2 !; 0 ?; 2 :)
% SPC : TF0_THM_NEQ_ARI
% Comments :
%------------------------------------------------------------------------------
tff(f_type,type,
f: $int > $int ).
tff(a_type,type,
a: $int ).
tff(b_type,type,
b: $int ).
tff(f_mon_implies_f_a_b_2,conjecture,
( ( ! [X: $int,Y: $int] :
( $lesseq(X,Y)
=> $lesseq(f(X),f(Y)) )
& $less(f(b),f(a)) )
=> $lesseq(f(0),f($sum(a,$uminus(b)))) ) ).
%------------------------------------------------------------------------------