TPTP Problem File: ARI604_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI604_1 : TPTP v9.0.0. Released v5.1.0.
% Domain : Arithmetic
% Problem : If f(X) > X, then f(-X) > -X, hence -f(-X) < X < f(X)
% Version : Especial.
% English :
% Refs : [Wal10] Waldmann (2010), Email to Geoff Sutcliffe
% Source : [Wal10]
% Names :
% Status : Theorem
% Rating : 0.00 v7.3.0, 0.12 v7.1.0, 0.00 v6.2.0, 0.20 v6.1.0, 0.33 v6.0.0, 0.38 v5.4.0, 0.62 v5.3.0, 0.71 v5.2.0, 0.80 v5.1.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 2 ( 0 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 1 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 3 ( 3 avg)
% Maximal term depth : 4 ( 2 avg)
% Number arithmetic : 6 ( 2 atm; 2 fun; 0 num; 2 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 1 ( 1 >; 0 *; 0 +; 0 <<)
% Number of predicates : 2 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 2 ( 1 usr; 0 con; 1-1 aty)
% Number of variables : 2 ( 2 !; 0 ?; 2 :)
% SPC : TF0_THM_NEQ_ARI
% Comments :
%------------------------------------------------------------------------------
tff(f_type,type,
f: $int > $int ).
tff(fX_gt_X_implies_negfnegX_lt_fX,conjecture,
( ! [X: $int] : $greater(f(X),X)
=> ! [X: $int] : $less($uminus(f($uminus(X))),f(X)) ) ).
%------------------------------------------------------------------------------