TPTP Problem File: ARI599_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI599_1 : TPTP v9.0.0. Released v5.1.0.
% Domain : Arithmetic
% Problem : Inequations imply a = b, hence f(a,b) = f(b,a)
% Version : Especial.
% English :
% Refs : [Wal10] Waldmann (2010), Email to Geoff Sutcliffe
% Source : [Wal10]
% Names :
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.12 v7.5.0, 0.10 v7.4.0, 0.00 v6.3.0, 0.29 v6.2.0, 0.50 v6.1.0, 0.44 v6.0.0, 0.43 v5.5.0, 0.56 v5.4.0, 0.50 v5.2.0, 0.83 v5.1.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 3 ( 1 equ)
% Maximal formula atoms : 3 ( 0 avg)
% Number of connectives : 2 ( 0 ~; 0 |; 1 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 3 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 10 ( 2 atm; 4 fun; 4 num; 0 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 2 ( 1 >; 1 *; 0 +; 0 <<)
% Number of predicates : 2 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 3 usr; 4 con; 0-2 aty)
% Number of variables : 0 ( 0 !; 0 ?; 0 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(a_type,type,
a: $int ).
tff(b_type,type,
b: $int ).
tff(f_type,type,
f: ( $int * $int ) > $int ).
tff(ineq_imply_f_eq_f,conjecture,
( ( $lesseq($product(2,a),$product(2,b))
& $lesseq($product(3,b),$product(3,a)) )
=> ( f(a,b) = f(b,a) ) ) ).
%------------------------------------------------------------------------------