TPTP Problem File: ARI579_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI579_1 : TPTP v9.0.0. Released v5.1.0.
% Domain : Arithmetic
% Problem : Inequation system is not solvable over $int (e.g., X = Y = 1/2)
% Version : Especial.
% English :
% Refs : [Wal10] Waldmann (2010), Email to Geoff Sutcliffe
% Source : [Wal10]
% Names :
% Status : CounterSatisfiable
% Rating : 0.00 v6.0.0, 0.33 v5.2.0, 1.00 v5.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 typ; 0 def)
% Number of atoms : 3 ( 0 equ)
% Maximal formula atoms : 3 ( 3 avg)
% Number of connectives : 2 ( 0 ~; 0 |; 2 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 13 ( 3 atm; 3 fun; 5 num; 2 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 0 usr; 4 con; 0-2 aty)
% Number of variables : 2 ( 0 !; 2 ?; 2 :)
% SPC : TF0_CSA_NEQ_ARI
% Comments : A theorem for $rat and $real.
%------------------------------------------------------------------------------
tff(ineq_sys_rat_solvable,conjecture,
? [X: $int,Y: $int] :
( $less(0,X)
& $less(0,Y)
& $less($sum($product(3,X),$product(4,Y)),6) ) ).
%------------------------------------------------------------------------------