TPTP Problem File: ANA139_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA139_1 : TPTP v9.0.0. Released v8.2.0.
% Domain : Number theory
% Problem : crafted_lim_c
% Version : Especial.
% English : lim[x -> a](c) = c
% Refs : [Sch22] Schoisswohl (2022), Email to G. Sutcliffe
% : [KK+23] Korovin et al. (2023), ALASCA: Reasoning in Quantified
% Source : [Sch22]
% Names : crafted_lim_c.smt2 [Sch22]
% Status : Theorem
% Rating : 0.00 v8.2.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 11 ( 1 equ)
% Maximal formula atoms : 11 ( 11 avg)
% Number of connectives : 13 ( 3 ~; 0 |; 4 &)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 11 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 29 ( 10 atm; 10 fun; 6 num; 3 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 3 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 2 usr; 3 con; 0-2 aty)
% Number of variables : 3 ( 2 !; 1 ?; 3 :)
% SPC : TF0_THM_EQU_ARI
% Comments : Translated from SMT UFLRA by SMTtoTPTP.
%------------------------------------------------------------------------------
%% Declarations:
tff(a,type,
a: $real ).
tff(c,type,
c: $real ).
%% Assertions:
%% ∀ epsilon:Real ((0.0 < epsilon) ⇒ ∃ delta:Real ((0.0 < delta) ∧ ∀ x:Real ((¬(x = a) ∧ ((if ((x - a) ≥ 0.0) (x - a) else -(x - a)) < delta)) ⇒ ((if ((c - c) ≥ 0.0) (c - c) else -(c - c)) < epsilon))))
tff(formula_1,conjecture,
! [Epsilon: $real] :
( $less(0.0,Epsilon)
=> ? [Delta: $real] :
( $less(0.0,Delta)
& ! [X: $real] :
( ( ( X != a )
& ( $greatereq($difference(X,a),0.0)
=> $less($difference(X,a),Delta) )
& ( ~ $greatereq($difference(X,a),0.0)
=> $less($uminus($difference(X,a)),Delta) ) )
=> ( ( $greatereq($difference(c,c),0.0)
=> $less($difference(c,c),Epsilon) )
& ( ~ $greatereq($difference(c,c),0.0)
=> $less($uminus($difference(c,c)),Epsilon) ) ) ) ) ) ).
%------------------------------------------------------------------------------