TPTP Problem File: ANA138_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA138_1 : TPTP v9.0.0. Released v8.2.0.
% Domain : Number theory
% Problem : crafted_lim_fgx
% Version : Especial.
% English : lim[x -> a](f(g(x))) = lim[x -> lim[x -> a](g(x))](f(x))
% Refs : [Sch22] Schoisswohl (2022), Email to G. Sutcliffe
% : [KK+23] Korovin et al. (2023), ALASCA: Reasoning in Quantified
% Source : [Sch22]
% Names : crafted_lim_fgx.smt2 [Sch22]
% Status : Theorem
% Rating : 1.00 v8.2.0
% Syntax : Number of formulae : 8 ( 0 unt; 5 typ; 0 def)
% Number of atoms : 33 ( 3 equ)
% Maximal formula atoms : 11 ( 11 avg)
% Number of connectives : 39 ( 9 ~; 0 |; 12 &)
% ( 0 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 11 avg)
% Maximal term depth : 5 ( 2 avg)
% Number arithmetic : 87 ( 30 atm; 30 fun; 18 num; 9 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of predicates : 3 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 9 ( 6 !; 3 ?; 9 :)
% SPC : TF0_THM_EQU_ARI
% Comments : Translated from SMT UFLRA by SMTtoTPTP.
%------------------------------------------------------------------------------
%% Declarations:
tff(lg,type,
lg: $real ).
tff(f,type,
f: $real > $real ).
tff(a,type,
a: $real ).
tff(g,type,
g: $real > $real ).
tff(l,type,
l: $real ).
%% Assertions:
%% ∀ epsilon:Real ((0.0 < epsilon) ⇒ ∃ delta:Real ((0.0 < delta) ∧ ∀ x:Real ((¬(x = a) ∧ ((if ((x - a) ≥ 0.0) (x - a) else -(x - a)) < delta)) ⇒ ((if ((f(g(x)) - l) ≥ 0.0) (f(g(x)) - l) else -(f(g(x)) - l)) < epsilon))))
tff(formula_1,axiom,
! [Epsilon: $real] :
( $less(0.0,Epsilon)
=> ? [Delta: $real] :
( $less(0.0,Delta)
& ! [X: $real] :
( ( ( X != a )
& ( $greatereq($difference(X,a),0.0)
=> $less($difference(X,a),Delta) )
& ( ~ $greatereq($difference(X,a),0.0)
=> $less($uminus($difference(X,a)),Delta) ) )
=> ( ( $greatereq($difference(f(g(X)),l),0.0)
=> $less($difference(f(g(X)),l),Epsilon) )
& ( ~ $greatereq($difference(f(g(X)),l),0.0)
=> $less($uminus($difference(f(g(X)),l)),Epsilon) ) ) ) ) ) ).
%% ∀ epsilon:Real ((0.0 < epsilon) ⇒ ∃ delta:Real ((0.0 < delta) ∧ ∀ x:Real ((¬(x = a) ∧ ((if ((x - a) ≥ 0.0) (x - a) else -(x - a)) < delta)) ⇒ ((if ((g(x) - lg) ≥ 0.0) (g(x) - lg) else -(g(x) - lg)) < epsilon))))
tff(formula_2,axiom,
! [Epsilon: $real] :
( $less(0.0,Epsilon)
=> ? [Delta: $real] :
( $less(0.0,Delta)
& ! [X: $real] :
( ( ( X != a )
& ( $greatereq($difference(X,a),0.0)
=> $less($difference(X,a),Delta) )
& ( ~ $greatereq($difference(X,a),0.0)
=> $less($uminus($difference(X,a)),Delta) ) )
=> ( ( $greatereq($difference(g(X),lg),0.0)
=> $less($difference(g(X),lg),Epsilon) )
& ( ~ $greatereq($difference(g(X),lg),0.0)
=> $less($uminus($difference(g(X),lg)),Epsilon) ) ) ) ) ) ).
%% ∀ epsilon:Real ((0.0 < epsilon) ⇒ ∃ delta:Real ((0.0 < delta) ∧ ∀ x:Real ((¬(x = lg) ∧ ((if ((x - lg) ≥ 0.0) (x - lg) else -(x - lg)) < delta)) ⇒ ((if ((f(x) - l) ≥ 0.0) (f(x) - l) else -(f(x) - l)) < epsilon))))
tff(formula_3,conjecture,
! [Epsilon: $real] :
( $less(0.0,Epsilon)
=> ? [Delta: $real] :
( $less(0.0,Delta)
& ! [X: $real] :
( ( ( X != lg )
& ( $greatereq($difference(X,lg),0.0)
=> $less($difference(X,lg),Delta) )
& ( ~ $greatereq($difference(X,lg),0.0)
=> $less($uminus($difference(X,lg)),Delta) ) )
=> ( ( $greatereq($difference(f(X),l),0.0)
=> $less($difference(f(X),l),Epsilon) )
& ( ~ $greatereq($difference(f(X),l),0.0)
=> $less($uminus($difference(f(X),l)),Epsilon) ) ) ) ) ) ).
%------------------------------------------------------------------------------