TPTP Problem File: ANA102^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA102^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis
% Problem : SUM_UNION_EQ
% Version : Especial.
% English :
% Refs : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source : [Kal16]
% Names : SUM_UNION_EQ_.p [Kal16]
% Status : Theorem
% Rating : 0.00 v7.1.0
% Syntax : Number of formulae : 15 ( 1 unt; 9 typ; 0 def)
% Number of atoms : 24 ( 6 equ; 0 cnn)
% Maximal formula atoms : 4 ( 4 avg)
% Number of connectives : 75 ( 0 ~; 0 |; 5 &; 67 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 8 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 42 ( 42 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 0 con; 2-4 aty)
% Number of variables : 28 ( 0 ^; 21 !; 0 ?; 28 :)
% ( 7 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_type_type/realax/real',type,
'type/realax/real': $tType ).
thf('thf_const_const/sets/UNION',type,
'const/sets/UNION':
!>[A: $tType] : ( ( A > $o ) > ( A > $o ) > A > $o ) ).
thf('thf_const_const/sets/SUBSET',type,
'const/sets/SUBSET':
!>[A: $tType] : ( ( A > $o ) > ( A > $o ) > $o ) ).
thf('thf_const_const/sets/INTER',type,
'const/sets/INTER':
!>[A: $tType] : ( ( A > $o ) > ( A > $o ) > A > $o ) ).
thf('thf_const_const/sets/FINITE',type,
'const/sets/FINITE':
!>[A: $tType] : ( ( A > $o ) > $o ) ).
thf('thf_const_const/sets/EMPTY',type,
'const/sets/EMPTY':
!>[A: $tType] : ( A > $o ) ).
thf('thf_const_const/sets/DISJOINT',type,
'const/sets/DISJOINT':
!>[A: $tType] : ( ( A > $o ) > ( A > $o ) > $o ) ).
thf('thf_const_const/realax/real_add',type,
'const/realax/real_add': 'type/realax/real' > 'type/realax/real' > 'type/realax/real' ).
thf('thf_const_const/iterate/sum',type,
'const/iterate/sum':
!>[A: $tType] : ( ( A > $o ) > ( A > 'type/realax/real' ) > 'type/realax/real' ) ).
thf('thm/sets/SUBSET_UNION_1',axiom,
! [A: $tType,A0: A > $o,A1: A > $o] : ( 'const/sets/SUBSET' @ A @ A0 @ ( 'const/sets/UNION' @ A @ A1 @ A0 ) ) ).
thf('thm/sets/SUBSET_UNION_0',axiom,
! [A: $tType,A0: A > $o,A1: A > $o] : ( 'const/sets/SUBSET' @ A @ A0 @ ( 'const/sets/UNION' @ A @ A0 @ A1 ) ) ).
thf('thm/sets/FINITE_SUBSET_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o] :
( ( ( 'const/sets/FINITE' @ A @ A1 )
& ( 'const/sets/SUBSET' @ A @ A0 @ A1 ) )
=> ( 'const/sets/FINITE' @ A @ A0 ) ) ).
thf('thm/sets/DISJOINT_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o] :
( ( 'const/sets/DISJOINT' @ A @ A0 @ A1 )
= ( ( 'const/sets/INTER' @ A @ A0 @ A1 )
= ( 'const/sets/EMPTY' @ A ) ) ) ).
thf('thm/iterate/SUM_UNION_',axiom,
! [A: $tType,A0: A > 'type/realax/real',A1: A > $o,A2: A > $o] :
( ( ( 'const/sets/FINITE' @ A @ A1 )
& ( 'const/sets/FINITE' @ A @ A2 )
& ( 'const/sets/DISJOINT' @ A @ A1 @ A2 ) )
=> ( ( 'const/iterate/sum' @ A @ ( 'const/sets/UNION' @ A @ A1 @ A2 ) @ A0 )
= ( 'const/realax/real_add' @ ( 'const/iterate/sum' @ A @ A1 @ A0 ) @ ( 'const/iterate/sum' @ A @ A2 @ A0 ) ) ) ) ).
thf('thm/iterate/SUM_UNION_EQ_',conjecture,
! [A: $tType,A0: A > 'type/realax/real',A1: A > $o,A2: A > $o,A3: A > $o] :
( ( ( 'const/sets/FINITE' @ A @ A3 )
& ( ( 'const/sets/INTER' @ A @ A1 @ A2 )
= ( 'const/sets/EMPTY' @ A ) )
& ( ( 'const/sets/UNION' @ A @ A1 @ A2 )
= A3 ) )
=> ( ( 'const/realax/real_add' @ ( 'const/iterate/sum' @ A @ A1 @ A0 ) @ ( 'const/iterate/sum' @ A @ A2 @ A0 ) )
= ( 'const/iterate/sum' @ A @ A3 @ A0 ) ) ) ).
%------------------------------------------------------------------------------