TPTP Problem File: ANA097^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA097^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis
% Problem : SUM_INCL_EXCL
% Version : Especial.
% English :
% Refs : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source : [Kal16]
% Names : SUM_INCL_EXCL_.p [Kal16]
% Status : Theorem
% Rating : 0.00 v7.5.0, 0.33 v7.2.0, 0.25 v7.1.0
% Syntax : Number of formulae : 12 ( 2 unt; 8 typ; 1 def)
% Number of atoms : 13 ( 3 equ; 0 cnn)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 73 ( 0 ~; 0 |; 2 &; 68 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 7 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 36 ( 36 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 0 con; 2-5 aty)
% Number of variables : 18 ( 0 ^; 11 !; 0 ?; 18 :)
% ( 7 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_type_type/realax/real',type,
'type/realax/real': $tType ).
thf('thf_const_const/sets/UNION',type,
'const/sets/UNION':
!>[A: $tType] : ( ( A > $o ) > ( A > $o ) > A > $o ) ).
thf('thf_const_const/sets/INTER',type,
'const/sets/INTER':
!>[A: $tType] : ( ( A > $o ) > ( A > $o ) > A > $o ) ).
thf('thf_const_const/sets/FINITE',type,
'const/sets/FINITE':
!>[A: $tType] : ( ( A > $o ) > $o ) ).
thf('thf_const_const/realax/real_add',type,
'const/realax/real_add': 'type/realax/real' > 'type/realax/real' > 'type/realax/real' ).
thf('thf_const_const/iterate/sum',type,
'const/iterate/sum':
!>[A: $tType] : ( ( A > $o ) > ( A > 'type/realax/real' ) > 'type/realax/real' ) ).
thf('thf_const_const/iterate/monoidal',type,
'const/iterate/monoidal':
!>[A: $tType] : ( ( A > A > A ) > $o ) ).
thf('thf_const_const/iterate/iterate',type,
'const/iterate/iterate':
!>[A: $tType,A0: $tType] : ( ( A0 > A0 > A0 ) > ( A > $o ) > ( A > A0 ) > A0 ) ).
thf('thm/iterate/ITERATE_INCL_EXCL_',axiom,
! [A: $tType,A0: $tType,A1: A0 > A0 > A0] :
( ( 'const/iterate/monoidal' @ A0 @ A1 )
=> ! [A2: A > $o,A3: A > $o,A4: A > A0] :
( ( ( 'const/sets/FINITE' @ A @ A2 )
& ( 'const/sets/FINITE' @ A @ A3 ) )
=> ( ( A1 @ ( 'const/iterate/iterate' @ A @ A0 @ A1 @ A2 @ A4 ) @ ( 'const/iterate/iterate' @ A @ A0 @ A1 @ A3 @ A4 ) )
= ( A1 @ ( 'const/iterate/iterate' @ A @ A0 @ A1 @ ( 'const/sets/UNION' @ A @ A2 @ A3 ) @ A4 ) @ ( 'const/iterate/iterate' @ A @ A0 @ A1 @ ( 'const/sets/INTER' @ A @ A2 @ A3 ) @ A4 ) ) ) ) ) ).
thf('thm/iterate/MONOIDAL_REAL_ADD_',axiom,
'const/iterate/monoidal' @ 'type/realax/real' @ 'const/realax/real_add' ).
thf('thm/iterate/sum_',definition,
! [A: $tType] :
( ( 'const/iterate/sum' @ A )
= ( 'const/iterate/iterate' @ A @ 'type/realax/real' @ 'const/realax/real_add' ) ) ).
thf('thm/iterate/SUM_INCL_EXCL_',conjecture,
! [A: $tType,A0: A > $o,A1: A > $o,A2: A > 'type/realax/real'] :
( ( ( 'const/sets/FINITE' @ A @ A0 )
& ( 'const/sets/FINITE' @ A @ A1 ) )
=> ( ( 'const/realax/real_add' @ ( 'const/iterate/sum' @ A @ A0 @ A2 ) @ ( 'const/iterate/sum' @ A @ A1 @ A2 ) )
= ( 'const/realax/real_add' @ ( 'const/iterate/sum' @ A @ ( 'const/sets/UNION' @ A @ A0 @ A1 ) @ A2 ) @ ( 'const/iterate/sum' @ A @ ( 'const/sets/INTER' @ A @ A0 @ A1 ) @ A2 ) ) ) ) ).
%------------------------------------------------------------------------------