TPTP Problem File: ANA078^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA078^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis
% Problem : SUP_SING
% Version : Especial.
% English :
% Refs : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source : [Kal16]
% Names : SUP_SING_.p [Kal16]
% Status : Theorem
% Rating : 1.00 v7.1.0
% Syntax : Number of formulae : 10 ( 1 unt; 7 typ; 0 def)
% Number of atoms : 10 ( 3 equ; 0 cnn)
% Maximal formula atoms : 2 ( 3 avg)
% Number of connectives : 23 ( 0 ~; 0 |; 0 &; 22 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 15 ( 15 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 0 con; 1-4 aty)
% Number of variables : 8 ( 0 ^; 4 !; 0 ?; 8 :)
% ( 4 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_type_type/realax/real',type,
'type/realax/real': $tType ).
thf('thf_const_const/sets/sup',type,
'const/sets/sup': ( 'type/realax/real' > $o ) > 'type/realax/real' ).
thf('thf_const_const/sets/INSERT',type,
'const/sets/INSERT':
!>[A: $tType] : ( A > ( A > $o ) > A > $o ) ).
thf('thf_const_const/sets/FINITE',type,
'const/sets/FINITE':
!>[A: $tType] : ( ( A > $o ) > $o ) ).
thf('thf_const_const/sets/EMPTY',type,
'const/sets/EMPTY':
!>[A: $tType] : ( A > $o ) ).
thf('thf_const_const/realax/real_max',type,
'const/realax/real_max': 'type/realax/real' > 'type/realax/real' > 'type/realax/real' ).
thf('thf_const_const/class/COND',type,
'const/class/COND':
!>[A: $tType] : ( $o > A > A > A ) ).
thf('thm/sets/SUP_INSERT_FINITE_',axiom,
! [A: 'type/realax/real',A0: 'type/realax/real' > $o] :
( ( 'const/sets/FINITE' @ 'type/realax/real' @ A0 )
=> ( ( 'const/sets/sup' @ ( 'const/sets/INSERT' @ 'type/realax/real' @ A @ A0 ) )
= ( 'const/class/COND' @ 'type/realax/real'
@ ( A0
= ( 'const/sets/EMPTY' @ 'type/realax/real' ) )
@ A
@ ( 'const/realax/real_max' @ A @ ( 'const/sets/sup' @ A0 ) ) ) ) ) ).
thf('thm/sets/FINITE_EMPTY_',axiom,
! [A: $tType] : ( 'const/sets/FINITE' @ A @ ( 'const/sets/EMPTY' @ A ) ) ).
thf('thm/sets/SUP_SING_',conjecture,
! [A: 'type/realax/real'] :
( ( 'const/sets/sup' @ ( 'const/sets/INSERT' @ 'type/realax/real' @ A @ ( 'const/sets/EMPTY' @ 'type/realax/real' ) ) )
= A ) ).
%------------------------------------------------------------------------------