TPTP Problem File: ANA068^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA068^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis
% Problem : real_INFINITE
% Version : Especial.
% English :
% Refs : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source : [Kal16]
% Names : real_INFINITE_.p [Kal16]
% Status : Theorem
% Rating : 0.00 v7.1.0
% Syntax : Number of formulae : 13 ( 1 unt; 8 typ; 0 def)
% Number of atoms : 14 ( 1 equ; 0 cnn)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 32 ( 2 ~; 0 |; 1 &; 28 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 6 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 21 ( 21 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 0 con; 2-4 aty)
% Number of variables : 16 ( 1 ^; 8 !; 1 ?; 16 :)
% ( 6 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_type_type/realax/real',type,
'type/realax/real': $tType ).
thf('thf_const_const/sets/UNIV',type,
'const/sets/UNIV':
!>[A: $tType] : ( A > $o ) ).
thf('thf_const_const/sets/SUBSET',type,
'const/sets/SUBSET':
!>[A: $tType] : ( ( A > $o ) > ( A > $o ) > $o ) ).
thf('thf_const_const/sets/SETSPEC',type,
'const/sets/SETSPEC':
!>[A: $tType] : ( A > $o > A > $o ) ).
thf('thf_const_const/sets/INFINITE',type,
'const/sets/INFINITE':
!>[A: $tType] : ( ( A > $o ) > $o ) ).
thf('thf_const_const/sets/GSPEC',type,
'const/sets/GSPEC':
!>[A: $tType] : ( ( A > $o ) > A > $o ) ).
thf('thf_const_const/sets/FINITE',type,
'const/sets/FINITE':
!>[A: $tType] : ( ( A > $o ) > $o ) ).
thf('thf_const_const/realax/real_le',type,
'const/realax/real_le': 'type/realax/real' > 'type/realax/real' > $o ).
thf('thm/sets/FINITE_REAL_INTERVAL_1',axiom,
! [A: 'type/realax/real'] :
~ ( 'const/sets/FINITE' @ 'type/realax/real'
@ ( 'const/sets/GSPEC' @ 'type/realax/real'
@ ^ [A0: 'type/realax/real'] :
? [A1: 'type/realax/real'] : ( 'const/sets/SETSPEC' @ 'type/realax/real' @ A0 @ ( 'const/realax/real_le' @ A @ A1 ) @ A1 ) ) ) ).
thf('thm/sets/SUBSET_UNIV_',axiom,
! [A: $tType,A0: A > $o] : ( 'const/sets/SUBSET' @ A @ A0 @ ( 'const/sets/UNIV' @ A ) ) ).
thf('thm/sets/FINITE_SUBSET_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o] :
( ( ( 'const/sets/FINITE' @ A @ A1 )
& ( 'const/sets/SUBSET' @ A @ A0 @ A1 ) )
=> ( 'const/sets/FINITE' @ A @ A0 ) ) ).
thf('thm/sets/INFINITE_',axiom,
! [A: $tType,A0: A > $o] :
( ( 'const/sets/INFINITE' @ A @ A0 )
= ( ~ ( 'const/sets/FINITE' @ A @ A0 ) ) ) ).
thf('thm/sets/real_INFINITE_',conjecture,
'const/sets/INFINITE' @ 'type/realax/real' @ ( 'const/sets/UNIV' @ 'type/realax/real' ) ).
%------------------------------------------------------------------------------