TPTP Problem File: ANA067^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA067^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis (Integration and its applications)
% Problem : The University of Tokyo, 2001, Science Course, Problem 3
% Version : [Mat16] axioms : Especial.
% English : For the real number t>1, let a(t) be the area of the triangle on
% the xy plane whose vertices are the points O(0, 0), P(1, 1), and
% Q(t,1/t), and let b(t) be the area of the region enclosed by the
% line segment OP and OQ, and the hyperbola x y=1. Assume that
% c(t)= b(t)/a(t), then prove that the function c() always decreases
% in the range of t>1.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tokyo-2001-Ri-3.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 708 unt;1199 typ; 0 def)
% Number of atoms : 8521 (2209 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39639 ( 104 ~; 233 |;1172 &;36003 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4478 ( 372 atm;1207 fun; 959 num;1940 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1219 (1176 usr; 73 con; 0-9 aty)
% Number of variables : 8060 ( 409 ^;7086 !; 429 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Ukyo Suzuki; Generated: 2013-12-19
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1,conjecture,
! [V_t: $real] :
( ( $greater @ V_t @ 1.0 )
=> ( 'decreasing-at/2'
@ ( 'fun/1'
@ ^ [V_t_dot_0: $real] :
( $quotient
@ ( ^ [V_t_dot_2: $real] : ( '2d.area-of/1' @ ( '2d.triangle/3' @ '2d.origin/0' @ ( '2d.point/2' @ 1.0 @ 1.0 ) @ ( '2d.point/2' @ V_t_dot_2 @ ( $quotient @ 1.0 @ V_t_dot_2 ) ) ) )
@ V_t_dot_0 )
@ ( ^ [V_t_dot_1: $real] :
( '2d.area-of/1'
@ ( '2d.shape-enclosed-by/1'
@ ( 'cons/2' @ '2d.Shape' @ ( '2d.seg/2' @ '2d.origin/0' @ ( '2d.point/2' @ 1.0 @ 1.0 ) )
@ ( 'cons/2' @ '2d.Shape' @ ( '2d.seg/2' @ '2d.origin/0' @ ( '2d.point/2' @ V_t_dot_1 @ ( $quotient @ 1.0 @ V_t_dot_1 ) ) )
@ ( 'cons/2' @ '2d.Shape'
@ ( '2d.shape-of-cpfun/1'
@ ^ [V_p: '2d.Point'] :
( 1.0
= ( $product @ ( '2d.x-coord/1' @ V_p ) @ ( '2d.y-coord/1' @ V_p ) ) ) )
@ ( 'nil/0' @ '2d.Shape' ) ) ) ) ) )
@ V_t_dot_0 ) ) )
@ V_t ) ) ).
%------------------------------------------------------------------------------