TPTP Problem File: ANA066^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA066^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis (Function and limit)
% Problem : The University of Tokyo, 1997, Science Course, Problem 3
% Version : [Mat16] axioms : Especial.
% English : Let r be a real number that satisfies 0<r<1. Consider the origin
% O(0, 0, 0) and the points A(1, 0, 0) and B(0, 1, 0) in the xyz
% space. (1) Find the range of r such that there exists the point
% r in the xyz space that satisfies |vec{PA}|=|vec{PB}|=r |vec{PO}|.
% (2) When the point P moves satisfying the condition mentioned in
% (1), assume that the functions M(r) and m(r) represent the maximum
% and minimum values of the inner product vec{PA}cdotvec{PB},
% respectively. Then, find the limit from the left
% lim_{--> 1-0}(1 - r)^2{M(r)- m(r)}.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tokyo-1997-Ri-3.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 727 unt;1199 typ; 0 def)
% Number of atoms : 6792 (2213 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39624 ( 104 ~; 233 |;1178 &;35983 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4473 ( 373 atm;1204 fun; 959 num;1937 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1211 (1168 usr; 65 con; 0-9 aty)
% Number of variables : 8060 ( 406 ^;7085 !; 433 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Yiyang Zhan; Generated: 2014-03-12
% : Answer
% ^ [V_r_dot_0: $real] :
% ( ( $lesseq @ ( $quotient @ ( 'sqrt/1' @ 2.0 ) @ 2.0 ) @ V_r_dot_0 )
% & ( $less @ V_r_dot_0 @ 1.0 ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_r: $real] :
( ( $less @ 0.0 @ V_r )
& ( $less @ V_r @ 1.0 )
& ? [V_O: '3d.Point',V_A: '3d.Point',V_B: '3d.Point',V_P: '3d.Point'] :
( ( V_O = '3d.origin/0' )
& ( V_A
= ( '3d.point/3' @ 1.0 @ 0.0 @ 0.0 ) )
& ( V_B
= ( '3d.point/3' @ 0.0 @ 1.0 @ 0.0 ) )
& ( ( '3d.radius/1' @ ( '3d.vec/2' @ V_P @ V_A ) )
= ( '3d.radius/1' @ ( '3d.vec/2' @ V_P @ V_B ) ) )
& ( ( '3d.radius/1' @ ( '3d.vec/2' @ V_P @ V_B ) )
= ( $product @ V_r @ ( '3d.radius/1' @ ( '3d.vec/2' @ V_P @ V_O ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------