TPTP Problem File: ANA063^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA063^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis (Differentiation and its applications)
% Problem : Tohoku University, 2009, Science Course, Problem 6
% Version : [Mat16] axioms : Especial.
% English : For the real number a, find the range of a such that the
% equation of x: |x(x - 2)| + 2 a |x| - 4 a |x - 2| - 1 = 0 has
% four different real solutions.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Tohoku-2009-Ri-6.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6417 (2209 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39644 ( 104 ~; 233 |;1179 &;36002 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4487 ( 374 atm;1215 fun; 956 num;1942 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2409 (2409 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1210 (1167 usr; 64 con; 0-9 aty)
% Number of variables : 8062 ( 407 ^;7085 !; 434 ?;8062 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Tomoya Ishii; Generated: 2014-04-16
% : Answer
% ^ [V_a_dot_0: $real] :
% ( ( ( $less @ ( $quotient @ -1.0 @ 8.0 ) @ V_a_dot_0 )
% & ( $less @ V_a_dot_0 @ 0.0 ) )
% | ( ( $less @ ( $quotient @ 2.0 @ 9.0 ) @ V_a_dot_0 )
% & ( $less @ V_a_dot_0 @ ( $quotient @ 1.0 @ 4.0 ) ) )
% | ( $less @ ( $sum @ 3.0 @ ( 'sqrt/1' @ 7.0 ) ) @ V_a_dot_0 ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_a: $real] :
? [V_x1: $real,V_x2: $real,V_x3: $real,V_x4: $real,V_f: $real > $real] :
( ( V_f
= ( ^ [V_x: $real] : ( $sum @ ( 'abs/1' @ ( $product @ V_x @ ( $difference @ V_x @ 2.0 ) ) ) @ ( $sum @ ( $product @ 2.0 @ ( $product @ V_a @ ( 'abs/1' @ V_x ) ) ) @ ( $sum @ ( $product @ ( $uminus @ 4.0 ) @ ( $product @ V_a @ ( 'abs/1' @ ( $difference @ V_x @ 2.0 ) ) ) ) @ ( $uminus @ 1.0 ) ) ) ) ) )
& ( $less @ V_x1 @ V_x2 )
& ( $less @ V_x2 @ V_x3 )
& ( $less @ V_x3 @ V_x4 )
& ( 'is-solution-of/2' @ V_x1 @ ( 'equation/1' @ V_f ) )
& ( 'is-solution-of/2' @ V_x2 @ ( 'equation/1' @ V_f ) )
& ( 'is-solution-of/2' @ V_x3 @ ( 'equation/1' @ V_f ) )
& ( 'is-solution-of/2' @ V_x4 @ ( 'equation/1' @ V_f ) ) ) ) ).
%------------------------------------------------------------------------------