TPTP Problem File: ANA062^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA062^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis (Trigonometric Functions)
% Problem : Osaka University, 1999, Science Course, Problem 3
% Version : [Mat16] axioms : Especial.
% English : There is a regular hexagon on a plane whose center is at the
% point O and whose vertices are at the points A_1, A_2, A_3, A_4,
% A_5, A_6. Let l be the straight line that passes through O on
% the same plane, and let d_k be the distance between each A_k and
% l. Prove that D = d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2 + d_6^2
% is constant independent of l, and find the value of it, where O
% A_k = r.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Osaka-1999-Ri-3.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3486 ( 711 unt;1200 typ; 0 def)
% Number of atoms : 8164 (2222 equ; 0 cnn)
% Maximal formula atoms : 40 ( 3 avg)
% Number of connectives : 39680 ( 104 ~; 233 |;1188 &;36029 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 34 ( 8 avg)
% Number arithmetic : 4479 ( 371 atm;1208 fun; 957 num;1943 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1217 (1174 usr; 71 con; 0-9 aty)
% Number of variables : 8071 ( 406 ^;7085 !; 444 ?;8071 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Hidenao Iwane; Generated: 2014-01-20
% : Answer
% ^ [V_D_dot_0: $real] :
% ( V_D_dot_0
% = ( $product @ 3.0 @ ( '^/2' @ 'r/0' @ 2.0 ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('r/0_type',type,
'r/0': $real ).
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_D: $real] :
? [V_A: '2d.Shape',V_A1: '2d.Point',V_A2: '2d.Point',V_A3: '2d.Point',V_A4: '2d.Point',V_A5: '2d.Point',V_A6: '2d.Point',V_O: '2d.Point',V_l: '2d.Shape',V_d1: $real,V_d2: $real,V_d3: $real,V_d4: $real,V_d5: $real,V_d6: $real] :
( ( V_D
= ( $sum @ ( '^/2' @ V_d1 @ 2.0 ) @ ( $sum @ ( '^/2' @ V_d2 @ 2.0 ) @ ( $sum @ ( '^/2' @ V_d3 @ 2.0 ) @ ( $sum @ ( '^/2' @ V_d4 @ 2.0 ) @ ( $sum @ ( '^/2' @ V_d5 @ 2.0 ) @ ( '^/2' @ V_d6 @ 2.0 ) ) ) ) ) ) )
& ( V_A
= ( '2d.polygon/1' @ ( 'cons/2' @ '2d.Point' @ V_A1 @ ( 'cons/2' @ '2d.Point' @ V_A2 @ ( 'cons/2' @ '2d.Point' @ V_A3 @ ( 'cons/2' @ '2d.Point' @ V_A4 @ ( 'cons/2' @ '2d.Point' @ V_A5 @ ( 'cons/2' @ '2d.Point' @ V_A6 @ ( 'nil/0' @ '2d.Point' ) ) ) ) ) ) ) ) )
& ( '2d.is-regular-polygon/1' @ V_A )
& ( 'r/0'
= ( '2d.distance/2' @ V_O @ V_A1 ) )
& ( 'r/0'
= ( '2d.distance/2' @ V_O @ V_A2 ) )
& ( 'r/0'
= ( '2d.distance/2' @ V_O @ V_A3 ) )
& ( 'r/0'
= ( '2d.distance/2' @ V_O @ V_A4 ) )
& ( 'r/0'
= ( '2d.distance/2' @ V_O @ V_A5 ) )
& ( 'r/0'
= ( '2d.distance/2' @ V_O @ V_A6 ) )
& ( '2d.line-type/1' @ V_l )
& ( '2d.on/2' @ V_O @ V_l )
& ( V_d1
= ( '2d.point-shape-distance/2' @ V_A1 @ V_l ) )
& ( V_d2
= ( '2d.point-shape-distance/2' @ V_A2 @ V_l ) )
& ( V_d3
= ( '2d.point-shape-distance/2' @ V_A3 @ V_l ) )
& ( V_d4
= ( '2d.point-shape-distance/2' @ V_A4 @ V_l ) )
& ( V_d5
= ( '2d.point-shape-distance/2' @ V_A5 @ V_l ) )
& ( V_d6
= ( '2d.point-shape-distance/2' @ V_A6 @ V_l ) ) ) ) ).
%------------------------------------------------------------------------------