TPTP Problem File: ANA061^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA061^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis (Differentiation and its applications)
% Problem : Nagoya University, 2003, Science Course, Problem 2
% Version : [Mat16] axioms : Especial.
% English : Let P and Q be the intersections of the circumference A: x^2 +
% y^2 = 1 with a radius of 1 and the straight line l: y = d ( 0 <
% d < 1) on the coordinate plane with the origin O. The point
% R(x, y) on the circumference A moves in the range of y > d. Let
% S be the intersection of the line segments OR and PQ, and let T
% be the foot of the perpendicular drawn from the point R to the
% line segment PQ, then represent the maximum length of the line
% segment ST.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Nagoya-2003-Ri-2.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3486 ( 709 unt;1200 typ; 0 def)
% Number of atoms : 8791 (2210 equ; 0 cnn)
% Maximal formula atoms : 41 ( 3 avg)
% Number of connectives : 39653 ( 105 ~; 233 |;1180 &;36009 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4471 ( 374 atm;1203 fun; 956 num;1938 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1223 (1180 usr; 77 con; 0-9 aty)
% Number of variables : 8061 ( 407 ^;7085 !; 433 ?;8061 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Ukyo Suzuki; Generated: 2014-08-04
% : Answer
% ^ [V_max_dot_0: $real] :
% ( V_max_dot_0
% = ( '^/2' @ ( $difference @ 1.0 @ ( '^/2' @ 'd/0' @ ( $quotient @ 2.0 @ 3.0 ) ) ) @ ( $quotient @ 3.0 @ 2.0 ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('d/0_type',type,
'd/0': $real ).
thf(p1_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_max: $real] :
? [V_P: '2d.Point',V_Q: '2d.Point'] :
( ( $less @ 0.0 @ 'd/0' )
& ( $less @ 'd/0' @ 1.0 )
& ( '2d.intersect/3' @ ( '2d.circle/2' @ '2d.origin/0' @ 1.0 ) @ ( '2d.graph-of/1' @ ( 'poly-fun/1' @ ( 'cons/2' @ $real @ 'd/0' @ ( 'nil/0' @ $real ) ) ) ) @ V_P )
& ( '2d.intersect/3' @ ( '2d.circle/2' @ '2d.origin/0' @ 1.0 ) @ ( '2d.graph-of/1' @ ( 'poly-fun/1' @ ( 'cons/2' @ $real @ 'd/0' @ ( 'nil/0' @ $real ) ) ) ) @ V_Q )
& ( V_P != V_Q )
& ( 'maximum/2'
@ ( 'set-by-def/1' @ $real
@ ^ [V_st: $real] :
? [V_R: '2d.Point',V_S: '2d.Point'] :
( ( $less @ 'd/0' @ ( '2d.y-coord/1' @ V_R ) )
& ( '2d.on/2' @ V_R @ ( '2d.circle/2' @ '2d.origin/0' @ 1.0 ) )
& ( '2d.intersect/3' @ ( '2d.seg/2' @ '2d.origin/0' @ V_R ) @ ( '2d.seg/2' @ V_P @ V_Q ) @ V_S )
& ( V_st
= ( '2d.distance/2' @ V_S @ ( '2d.foot-of-perpendicular-line-from-to/2' @ V_R @ ( '2d.line/2' @ V_P @ V_Q ) ) ) ) ) )
@ V_max ) ) ) ).
%------------------------------------------------------------------------------