TPTP Problem File: ANA060^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA060^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis (Integration and its applications)
% Problem : Kyushu University, 2013, Science Course, Problem 4
% Version : [Mat16] axioms : Especial.
% English : Let S be the circle centered at the origin O and passing through
% the point A(0, 1). When the circle T inscribed in the circle S at
% the point B(1/2, sqrt(3)/2) is in contact with the y axis at the
% point C, answer the following questions: (1) Find the coordinates
% of the center D and the radius of the circle T. (2) Let l be the
% straight line passing through the point D and parallel to the x
% axis. Find the volume of the solid obtained by rotating the figure
% enclosed by the shorter arc AB of the S, the shorter arc BC of
% the circle T, and the line segment AC around l.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Kyushu-2013-Ri-4.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 727 unt;1199 typ; 0 def)
% Number of atoms : 6678 (2212 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39626 ( 104 ~; 233 |;1181 &;35982 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4469 ( 371 atm;1205 fun; 957 num;1936 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1216 (1173 usr; 70 con; 0-9 aty)
% Number of variables : 8061 ( 406 ^;7085 !; 434 ?;8061 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Yiyang Zhan; Generated: 2014-05-14
% : Answer
% ^ [V_D_dot_0: '2d.Point'] :
% ( V_D_dot_0
% = ( '2d.point/2' @ ( $quotient @ 1.0 @ 3.0 ) @ ( $quotient @ ( 'sqrt/1' @ 3.0 ) @ 3.0 ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_1_qustion,conjecture,
( 'find/1' @ '2d.Point'
@ ^ [V_D: '2d.Point'] :
? [V_A: '2d.Point',V_B: '2d.Point',V_C: '2d.Point',V_S: '2d.Shape',V_T: '2d.Shape'] :
( ( V_A
= ( '2d.point/2' @ 0.0 @ 1.0 ) )
& ( '2d.circle-type/1' @ V_S )
& ( ( '2d.center-of/1' @ V_S )
= '2d.origin/0' )
& ( '2d.on/2' @ V_A @ V_S )
& ( '2d.circle-type/1' @ V_T )
& ( '2d.is-inscribed-in/2' @ V_T @ V_S )
& ( V_B
= ( '2d.point/2' @ ( $quotient @ 1.0 @ 2.0 ) @ ( $quotient @ ( 'sqrt/1' @ 3.0 ) @ 2.0 ) ) )
& ( '2d.tangent/3' @ V_S @ V_T @ V_B )
& ( '2d.tangent/3' @ V_T @ '2d.y-axis/0' @ V_C )
& ( V_D
= ( '2d.center-of/1' @ V_T ) ) ) ) ).
%------------------------------------------------------------------------------