TPTP Problem File: ANA059^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA059^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis (Differentiation and its applications)
% Problem : Kyushu University, 1999, Science Course, Problem 3
% Version : [Mat16] axioms : Especial.
% English : (1) For the real number k >= 0, find the equation of the curve
% that satisfies int_0^{2pi}{y(xcos {theta} + {1}/{2} x^2)-
% (xcos {theta} + {1}/{2} x^2)^2}cos {theta} d {theta} = 2 k
% {pi} on the x y plane. (2) Find the range of the value of the
% real number a such that the curve found in (1) and the straight
% line y = a have only one common point.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Kyushu-1999-Ri-3.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3486 ( 725 unt;1200 typ; 0 def)
% Number of atoms : 6766 (2210 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39639 ( 104 ~; 233 |;1173 &;36003 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4490 ( 372 atm;1217 fun; 962 num;1939 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1214 (1171 usr; 68 con; 0-9 aty)
% Number of variables : 8059 ( 409 ^;7085 !; 429 ?;8059 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Takuya Matsuzaki; Generated: 2014-01-25
% : Answer
% ^ [V_C_dot_0: '2d.Shape'] :
% ( ( ( $greater @ 'k/0' @ 0.0 )
% & ( V_C_dot_0
% = ( '2d.set-of-cfun/1'
% @ ^ [V_x_dot_1: $real,V_y_dot_1: $real] :
% ( ( V_x_dot_1 != 0.0 )
% & ( ( $difference @ ( $product @ V_x_dot_1 @ V_y_dot_1 ) @ ( '^/2' @ V_x_dot_1 @ 3.0 ) )
% = ( $product @ 2.0 @ 'k/0' ) ) ) ) ) )
% | ( ( 'k/0' = 0.0 )
% & ( V_C_dot_0
% = ( '2d.set-of-cfun/1'
% @ ^ [V_x_dot_0: $real,V_y_dot_0: $real] :
% ( ( V_y_dot_0
% = ( '^/2' @ V_x_dot_0 @ 2.0 ) )
% | ( V_x_dot_0 = 0.0 ) ) ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf('k/0_type',type,
'k/0': $real ).
thf(p1_qustion,conjecture,
( 'find/1' @ '2d.Shape'
@ ^ [V_C: '2d.Shape'] :
( ( $lesseq @ 0.0 @ 'k/0' )
& ( V_C
= ( '2d.set-of-cfun/1'
@ ^ [V_x: $real,V_y: $real] :
( ( 'integration/3'
@ ( 'fun/1'
@ ^ [V_theta: $real] : ( $product @ ( $difference @ ( $product @ V_y @ ( $sum @ ( $product @ V_x @ ( 'cos/1' @ V_theta ) ) @ ( $product @ ( $quotient @ 1.0 @ 2.0 ) @ ( '^/2' @ V_x @ 2.0 ) ) ) ) @ ( '^/2' @ ( $sum @ ( $product @ V_x @ ( 'cos/1' @ V_theta ) ) @ ( $product @ ( $quotient @ 1.0 @ 2.0 ) @ ( '^/2' @ V_x @ 2.0 ) ) ) @ 2.0 ) ) @ ( 'cos/1' @ V_theta ) ) )
@ 0.0
@ ( $product @ 2.0 @ 'Pi/0' ) )
= ( $product @ 2.0 @ ( $product @ 'k/0' @ 'Pi/0' ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------