TPTP Problem File: ANA058^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA058^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis (Integration and its applications)
% Problem : Kyoto University, 1999, Science Course, Problem 6
% Version : [Mat16] axioms : Especial.
% English : Assume that x and y are given as follows using t as a parameter.
% x=3t-t^2/t+1 y=3t^2-t^3/t+1. When the parameter t moves in the
% range 0 < t <= 3, find the ranges in which x and y move,
% respectively. Find the area of the intersection of the figure
% formed by (x, y) and the region yge x.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : Univ-Kyoto-1999-Ri-6.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6549 (2210 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39625 ( 104 ~; 233 |;1175 &;35987 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4485 ( 373 atm;1213 fun; 960 num;1939 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1208 (1165 usr; 62 con; 0-9 aty)
% Number of variables : 8058 ( 406 ^;7085 !; 431 ?;8058 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: RCF; Author: Hidenao Iwane; Generated: 2014-01-14
% : Answer
% ^ [V_x_dot_0: $real] :
% ( ( $lesseq @ 0.0 @ V_x_dot_0 )
% & ( $lesseq @ V_x_dot_0 @ 1.0 ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p1_x_qustion,conjecture,
( 'find/1' @ $real
@ ^ [V_x: $real] :
? [V_t: $real,V_y: $real] :
( ( V_x
= ( $quotient @ ( $sum @ ( $product @ 3.0 @ V_t ) @ ( $uminus @ ( '^/2' @ V_t @ 2.0 ) ) ) @ ( $sum @ V_t @ 1.0 ) ) )
& ( V_y
= ( $quotient @ ( $sum @ ( $product @ 3.0 @ ( '^/2' @ V_t @ 2.0 ) ) @ ( $uminus @ ( '^/2' @ V_t @ 3.0 ) ) ) @ ( $sum @ V_t @ 1.0 ) ) )
& ( $lesseq @ 0.0 @ V_t )
& ( $lesseq @ V_t @ 3.0 ) ) ) ).
%------------------------------------------------------------------------------