TPTP Problem File: ANA056^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA056^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis
% Problem : International Mathematical Olympiad, 2002, Problem 5
% Version : [Mat16] axioms : Especial.
% English : Find all real-valued functions on the reals such that
% (f(x) + f(y))((f(u) + f(v)) = f(xu - yv) + f (xv + yu) for
% all x, y, u, v.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-2002-5.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6386 (2209 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39620 ( 104 ~; 233 |;1172 &;35985 @)
% (1095 <=>;1031 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4475 ( 371 atm;1213 fun; 951 num;1940 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2410 (2410 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1207 (1164 usr; 61 con; 0-9 aty)
% Number of variables : 8060 ( 406 ^;7089 !; 429 ?;8060 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: ZF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-11-04
% : Answer
% ^ [V_f_dot_0: ( $real > $real )] :
% ( ( V_f_dot_0
% = ( ^ [V_x_dot_2: $real] : 0.0 ) )
% | ( V_f_dot_0
% = ( ^ [V_x_dot_1: $real] :
% ( $quotient @ 1.0 @ 2.0 ) ) )
% | ( V_f_dot_0
% = ( ^ [V_x_dot_0: $real] :
% ( '^/2' @ V_x_dot_0 @ 2.0 ) ) ) ) )
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p_qustion,conjecture,
( 'find/1' @ ( $real > $real )
@ ^ [V_f: $real > $real] :
! [V_x: $real,V_y: $real,V_u: $real,V_v: $real] :
( ( $product @ ( $sum @ ( V_f @ V_x ) @ ( V_f @ V_y ) ) @ ( $sum @ ( V_f @ V_u ) @ ( V_f @ V_v ) ) )
= ( $sum @ ( V_f @ ( $difference @ ( $product @ V_x @ V_u ) @ ( $product @ V_y @ V_v ) ) ) @ ( V_f @ ( $sum @ ( $product @ V_x @ V_v ) @ ( $product @ V_y @ V_u ) ) ) ) ) ) ).
%------------------------------------------------------------------------------