TPTP Problem File: ANA045-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA045-1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Analysis
% Problem : Problem about Big-O notation
% Version : [Pau06] axioms : Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : BigO__bigo_zero [Pau06]
% Status : Unsatisfiable
% Rating : 0.35 v8.2.0, 0.33 v8.1.0, 0.37 v7.5.0, 0.47 v7.3.0, 0.42 v7.1.0, 0.33 v7.0.0, 0.40 v6.4.0, 0.53 v6.3.0, 0.36 v6.2.0, 0.40 v6.1.0, 0.50 v6.0.0, 0.30 v5.5.0, 0.50 v5.3.0, 0.56 v5.2.0, 0.50 v5.1.0, 0.59 v5.0.0, 0.50 v4.1.0, 0.46 v4.0.1, 0.45 v3.7.0, 0.40 v3.5.0, 0.55 v3.4.0, 0.58 v3.3.0, 0.57 v3.2.0
% Syntax : Number of clauses : 2784 ( 646 unt; 248 nHn;1975 RR)
% Number of literals : 6116 (1279 equ;3143 neg)
% Maximal clause size : 7 ( 2 avg)
% Maximal term depth : 8 ( 1 avg)
% Number of predicates : 87 ( 86 usr; 0 prp; 1-3 aty)
% Number of functors : 237 ( 237 usr; 45 con; 0-18 aty)
% Number of variables : 5799 (1183 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found.
%------------------------------------------------------------------------------
include('Axioms/ANA003-0.ax').
include('Axioms/MSC001-1.ax').
include('Axioms/MSC001-0.ax').
%------------------------------------------------------------------------------
cnf(cls_SetsAndFunctions_Oset__one__times_0,axiom,
( ~ class_OrderedGroup_Ocomm__monoid__mult(T_a)
| c_SetsAndFunctions_Oelt__set__times(c_1,V_y,T_a) = V_y ) ).
cnf(cls_SetsAndFunctions_Oset__zero__plus_0,axiom,
( ~ class_OrderedGroup_Ocomm__monoid__add(T_a)
| c_SetsAndFunctions_Oelt__set__plus(c_0,V_y,T_a) = V_y ) ).
cnf(cls_conjecture_0,negated_conjecture,
~ c_lessequals(c_0,c_times(V_U,c_HOL_Oabs(v_g(v_x(V_U)),t_b),t_b),t_b) ).
cnf(tfree_tcs,negated_conjecture,
class_Ring__and__Field_Oordered__idom(t_b) ).
%------------------------------------------------------------------------------