TPTP Problem File: ANA044-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA044-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Analysis
% Problem : Problem about Big-O notation
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v5.3.0, 0.08 v5.2.0, 0.00 v5.1.0, 0.14 v5.0.0, 0.29 v4.1.0, 0.22 v4.0.1, 0.33 v3.7.0, 0.17 v3.3.0, 0.29 v3.2.0
% Syntax : Number of clauses : 8 ( 4 unt; 0 nHn; 6 RR)
% Number of literals : 15 ( 2 equ; 8 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-3 aty)
% Number of functors : 9 ( 9 usr; 4 con; 0-3 aty)
% Number of variables : 10 ( 3 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_conjecture_0,negated_conjecture,
c_lessequals(c_0,v_l(V_U,V_V),t_b) ).
cnf(cls_conjecture_1,negated_conjecture,
c_lessequals(c_0,v_h(V_U),t_b) ).
cnf(cls_conjecture_3,negated_conjecture,
c_times(v_l(v_x,v_xa),v_h(v_k(v_x,v_xa)),t_b) != c_HOL_Oabs(c_times(v_l(v_x,v_xa),v_h(v_k(v_x,v_xa)),t_b),t_b) ).
cnf(tfree_tcs,negated_conjecture,
class_Ring__and__Field_Oordered__idom(t_b) ).
cnf(cls_OrderedGroup_Oabs__of__nonneg_0,axiom,
( ~ class_OrderedGroup_Olordered__ab__group__abs(T_a)
| ~ c_lessequals(c_0,V_y,T_a)
| c_HOL_Oabs(V_y,T_a) = V_y ) ).
cnf(cls_Ring__and__Field_Omult__nonneg__nonneg_0,axiom,
( ~ class_Ring__and__Field_Opordered__cancel__semiring(T_a)
| ~ c_lessequals(c_0,V_b,T_a)
| ~ c_lessequals(c_0,V_a,T_a)
| c_lessequals(c_0,c_times(V_a,V_b,T_a),T_a) ) ).
cnf(clsrel_Ring__and__Field_Oordered__idom_40,axiom,
( ~ class_Ring__and__Field_Oordered__idom(T)
| class_Ring__and__Field_Opordered__cancel__semiring(T) ) ).
cnf(clsrel_Ring__and__Field_Oordered__idom_50,axiom,
( ~ class_Ring__and__Field_Oordered__idom(T)
| class_OrderedGroup_Olordered__ab__group__abs(T) ) ).
%------------------------------------------------------------------------------