TPTP Problem File: ANA039-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA039-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Analysis
% Problem : Problem about Big-O notation
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v6.1.0, 0.07 v6.0.0, 0.00 v5.5.0, 0.06 v5.4.0, 0.11 v5.3.0, 0.15 v5.2.0, 0.00 v5.1.0, 0.06 v5.0.0, 0.07 v4.0.1, 0.00 v3.2.0
% Syntax : Number of clauses : 10 ( 3 unt; 0 nHn; 7 RR)
% Number of literals : 21 ( 0 equ; 12 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 1-3 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-3 aty)
% Number of variables : 16 ( 1 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_conjecture_0,negated_conjecture,
c_lessequals(c_HOL_Oabs(v_h(V_U),t_a),c_times(v_c,c_HOL_Oabs(v_f(V_U),t_a),t_a),t_a) ).
cnf(cls_conjecture_2,negated_conjecture,
~ c_lessequals(c_HOL_Oabs(v_h(v_x),t_a),c_times(c_HOL_Oabs(v_c,t_a),c_HOL_Oabs(v_f(v_x),t_a),t_a),t_a) ).
cnf(tfree_tcs,negated_conjecture,
class_Ring__and__Field_Oordered__idom(t_a) ).
cnf(cls_OrderedGroup_Oabs__ge__self_0,axiom,
( ~ class_OrderedGroup_Olordered__ab__group__abs(T_a)
| c_lessequals(V_a,c_HOL_Oabs(V_a,T_a),T_a) ) ).
cnf(cls_OrderedGroup_Oabs__ge__zero_0,axiom,
( ~ class_OrderedGroup_Olordered__ab__group__abs(T_a)
| c_lessequals(c_0,c_HOL_Oabs(V_a,T_a),T_a) ) ).
cnf(cls_Orderings_Oorder__class_Oorder__trans_0,axiom,
( ~ class_Orderings_Oorder(T_a)
| ~ c_lessequals(V_y,V_z,T_a)
| ~ c_lessequals(V_x,V_y,T_a)
| c_lessequals(V_x,V_z,T_a) ) ).
cnf(cls_Ring__and__Field_Opordered__semiring__class_Omult__right__mono_0,axiom,
( ~ class_Ring__and__Field_Opordered__semiring(T_a)
| ~ c_lessequals(V_a,V_b,T_a)
| ~ c_lessequals(c_0,V_c,T_a)
| c_lessequals(c_times(V_a,V_c,T_a),c_times(V_b,V_c,T_a),T_a) ) ).
cnf(clsrel_Ring__and__Field_Oordered__idom_42,axiom,
( ~ class_Ring__and__Field_Oordered__idom(T)
| class_Ring__and__Field_Opordered__semiring(T) ) ).
cnf(clsrel_Ring__and__Field_Oordered__idom_44,axiom,
( ~ class_Ring__and__Field_Oordered__idom(T)
| class_Orderings_Oorder(T) ) ).
cnf(clsrel_Ring__and__Field_Oordered__idom_50,axiom,
( ~ class_Ring__and__Field_Oordered__idom(T)
| class_OrderedGroup_Olordered__ab__group__abs(T) ) ).
%------------------------------------------------------------------------------