TPTP Problem File: ANA035-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA035-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Analysis
% Problem : Problem about Big-O notation
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v6.0.0, 0.11 v5.5.0, 0.19 v5.4.0, 0.27 v5.3.0, 0.42 v5.2.0, 0.12 v5.1.0, 0.00 v4.1.0, 0.22 v4.0.1, 0.17 v3.3.0, 0.14 v3.2.0
% Syntax : Number of clauses : 6 ( 2 unt; 0 nHn; 3 RR)
% Number of literals : 10 ( 4 equ; 5 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-3 aty)
% Number of variables : 11 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_conjecture_4,negated_conjecture,
c_times(c_times(v_c,v_ca,t_b),c_HOL_Oabs(c_times(v_f(v_x),v_g(v_x),t_b),t_b),t_b) != c_times(c_times(v_c,c_HOL_Oabs(v_f(v_x),t_b),t_b),c_times(v_ca,c_HOL_Oabs(v_g(v_x),t_b),t_b),t_b) ).
cnf(tfree_tcs,negated_conjecture,
class_Ring__and__Field_Oordered__idom(t_b) ).
cnf(cls_OrderedGroup_Omult__ac__2_0,axiom,
( ~ class_OrderedGroup_Oab__semigroup__mult(T_a)
| c_times(V_a,V_b,T_a) = c_times(V_b,V_a,T_a) ) ).
cnf(cls_OrderedGroup_Omult__ac__3_0,axiom,
( ~ class_OrderedGroup_Oab__semigroup__mult(T_a)
| c_times(V_a,c_times(V_b,V_c,T_a),T_a) = c_times(V_b,c_times(V_a,V_c,T_a),T_a) ) ).
cnf(cls_Ring__and__Field_Oabs__mult_0,axiom,
( ~ class_Ring__and__Field_Oordered__idom(T_a)
| c_HOL_Oabs(c_times(V_a,V_b,T_a),T_a) = c_times(c_HOL_Oabs(V_a,T_a),c_HOL_Oabs(V_b,T_a),T_a) ) ).
cnf(clsrel_Ring__and__Field_Oordered__idom_17,axiom,
( ~ class_Ring__and__Field_Oordered__idom(T)
| class_OrderedGroup_Oab__semigroup__mult(T) ) ).
%------------------------------------------------------------------------------