TPTP Problem File: ANA023-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA023-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : Problem about Big-O notation
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.14 v8.2.0, 0.12 v8.1.0, 0.10 v7.5.0
% Syntax : Number of clauses : 14 ( 14 unt; 0 nHn; 4 RR)
% Number of literals : 14 ( 14 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 17 ( 17 usr; 4 con; 0-4 aty)
% Number of variables : 24 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from ANA023-2 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq2(A,A,B,C) = B ).
cnf(ifeq_axiom_001,axiom,
ifeq(A,A,B,C) = B ).
cnf(cls_OrderedGroup_Ocomm__monoid__add__class_Oaxioms_0,axiom,
ifeq2(class_OrderedGroup_Ocomm__monoid__add(T_a),true,c_plus(c_0,V_y,T_a),V_y) = V_y ).
cnf(cls_OrderedGroup_Ocompare__rls__9_0,axiom,
ifeq(class_OrderedGroup_Opordered__ab__group__add(T_a),true,ifeq(c_lessequals(V_a,c_minus(V_c,V_b,T_a),T_a),true,c_lessequals(c_plus(V_a,V_b,T_a),V_c,T_a),true),true) = true ).
cnf(cls_OrderedGroup_Ocompare__rls__9_1,axiom,
ifeq(class_OrderedGroup_Opordered__ab__group__add(T_a),true,ifeq(c_lessequals(c_plus(V_a,V_b,T_a),V_c,T_a),true,c_lessequals(V_a,c_minus(V_c,V_b,T_a),T_a),true),true) = true ).
cnf(cls_Orderings_Oorder__class_Oorder__trans_0,axiom,
ifeq(class_Orderings_Oorder(T_a),true,ifeq(c_lessequals(V_x,V_y,T_a),true,ifeq(c_lessequals(V_y,V_z,T_a),true,c_lessequals(V_x,V_z,T_a),true),true),true) = true ).
cnf(cls_conjecture_1,negated_conjecture,
c_lessequals(c_0,c_minus(v_k(v_x),v_g(v_x),t_b),t_b) = true ).
cnf(cls_conjecture_2,negated_conjecture,
c_lessequals(v_k(v_x),v_f(v_x),t_b) = true ).
cnf(cls_conjecture_3,negated_conjecture,
c_lessequals(c_0,c_minus(v_f(v_x),v_g(v_x),t_b),t_b) != true ).
cnf(clsrel_Orderings_Olinorder_4,axiom,
ifeq(class_Orderings_Olinorder(T),true,class_Orderings_Oorder(T),true) = true ).
cnf(clsrel_Ring__and__Field_Oordered__idom_23,axiom,
ifeq(class_Ring__and__Field_Oordered__idom(T),true,class_OrderedGroup_Ocomm__monoid__add(T),true) = true ).
cnf(clsrel_Ring__and__Field_Oordered__idom_33,axiom,
ifeq(class_Ring__and__Field_Oordered__idom(T),true,class_Orderings_Olinorder(T),true) = true ).
cnf(clsrel_Ring__and__Field_Oordered__idom_54,axiom,
ifeq(class_Ring__and__Field_Oordered__idom(T),true,class_OrderedGroup_Opordered__ab__group__add(T),true) = true ).
cnf(tfree_tcs,negated_conjecture,
class_Ring__and__Field_Oordered__idom(t_b) = true ).
%------------------------------------------------------------------------------