TPTP Problem File: ANA020-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA020-1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Analysis
% Problem : Problem about Big-O notation
% Version : [Pau06] axioms : Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : BigO__bigo_fix_simpler_1 [Pau06]
% Status : Unsatisfiable
% Rating : 0.40 v9.0.0, 0.35 v8.2.0, 0.48 v8.1.0, 0.26 v7.5.0, 0.37 v7.4.0, 0.35 v7.3.0, 0.33 v7.1.0, 0.25 v7.0.0, 0.40 v6.3.0, 0.27 v6.2.0, 0.50 v6.1.0, 0.71 v6.0.0, 0.60 v5.5.0, 0.85 v5.3.0, 0.89 v5.2.0, 0.81 v5.1.0, 0.82 v5.0.0, 0.79 v4.1.0, 0.69 v4.0.1, 0.82 v3.7.0, 0.80 v3.5.0, 0.82 v3.4.0, 0.83 v3.3.0, 0.79 v3.2.0
% Syntax : Number of clauses : 2791 ( 650 unt; 248 nHn;1981 RR)
% Number of literals : 6129 (1282 equ;3149 neg)
% Maximal clause size : 7 ( 2 avg)
% Maximal term depth : 8 ( 1 avg)
% Number of predicates : 87 ( 86 usr; 0 prp; 1-3 aty)
% Number of functors : 239 ( 239 usr; 47 con; 0-18 aty)
% Number of variables : 5806 (1183 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found.
%------------------------------------------------------------------------------
include('Axioms/ANA003-0.ax').
include('Axioms/MSC001-1.ax').
include('Axioms/MSC001-0.ax').
%------------------------------------------------------------------------------
cnf(cls_NatBin_OSuc__pred_H_0,axiom,
( ~ c_less(c_0,V_x,tc_nat)
| V_x = c_Suc(c_minus(V_x,c_1,tc_nat)) ) ).
cnf(cls_Orderings_Oorder__less__imp__le_0,axiom,
( ~ class_Orderings_Oorder(T_a)
| ~ c_less(V_x,V_y,T_a)
| c_lessequals(V_x,V_y,T_a) ) ).
cnf(cls_Ring__and__Field_Omult__nonneg__nonneg_0,axiom,
( ~ class_Ring__and__Field_Opordered__cancel__semiring(T_a)
| ~ c_lessequals(c_0,V_b,T_a)
| ~ c_lessequals(c_0,V_a,T_a)
| c_lessequals(c_0,c_times(V_a,V_b,T_a),T_a) ) ).
cnf(cls_SetsAndFunctions_Oset__one__times_0,axiom,
( ~ class_OrderedGroup_Ocomm__monoid__mult(T_a)
| c_SetsAndFunctions_Oelt__set__times(c_1,V_y,T_a) = V_y ) ).
cnf(cls_SetsAndFunctions_Oset__zero__plus_0,axiom,
( ~ class_OrderedGroup_Ocomm__monoid__add(T_a)
| c_SetsAndFunctions_Oelt__set__plus(c_0,V_y,T_a) = V_y ) ).
cnf(cls_conjecture_0,negated_conjecture,
v_f(c_0) = c_0 ).
cnf(cls_conjecture_1,negated_conjecture,
c_less(c_0,v_c,t_a) ).
cnf(cls_conjecture_2,negated_conjecture,
c_lessequals(c_HOL_Oabs(v_f(c_Suc(V_U)),t_a),c_times(v_c,c_HOL_Oabs(v_h(c_Suc(V_U)),t_a),t_a),t_a) ).
cnf(cls_conjecture_3,negated_conjecture,
v_x = c_0 ).
cnf(cls_conjecture_4,negated_conjecture,
~ c_lessequals(c_HOL_Oabs(v_f(v_x),t_a),c_times(v_c,c_HOL_Oabs(v_h(v_x),t_a),t_a),t_a) ).
cnf(tfree_tcs,negated_conjecture,
class_Ring__and__Field_Oordered__idom(t_a) ).
%------------------------------------------------------------------------------