TPTP Problem File: ANA014-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA014-1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Analysis
% Problem : Problem about Big-O notation
% Version : [Pau06] axioms : Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : BigO__bigo_const_mult3 [Pau06]
% Status : Unsatisfiable
% Rating : 0.75 v9.0.0, 0.85 v8.2.0, 0.86 v8.1.0, 0.79 v7.4.0, 0.82 v7.3.0, 0.83 v7.1.0, 0.75 v7.0.0, 0.80 v6.3.0, 0.73 v6.2.0, 0.80 v6.1.0, 0.93 v6.0.0, 0.90 v5.5.0, 0.95 v5.3.0, 1.00 v5.2.0, 0.94 v5.0.0, 1.00 v3.2.0
% Syntax : Number of clauses : 2787 ( 647 unt; 248 nHn;1976 RR)
% Number of literals : 6121 (1282 equ;3146 neg)
% Maximal clause size : 7 ( 2 avg)
% Maximal term depth : 8 ( 1 avg)
% Number of predicates : 87 ( 86 usr; 0 prp; 1-3 aty)
% Number of functors : 238 ( 238 usr; 46 con; 0-18 aty)
% Number of variables : 5806 (1183 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found.
%------------------------------------------------------------------------------
include('Axioms/ANA003-0.ax').
include('Axioms/MSC001-1.ax').
include('Axioms/MSC001-0.ax').
%------------------------------------------------------------------------------
cnf(cls_OrderedGroup_Osemigroup__mult__class_Omult__assoc_0,axiom,
( ~ class_OrderedGroup_Osemigroup__mult(T_a)
| c_times(c_times(V_a,V_b,T_a),V_c,T_a) = c_times(V_a,c_times(V_b,V_c,T_a),T_a) ) ).
cnf(cls_Ring__and__Field_Oabs__mult_0,axiom,
( ~ class_Ring__and__Field_Oordered__idom(T_a)
| c_HOL_Oabs(c_times(V_a,V_b,T_a),T_a) = c_times(c_HOL_Oabs(V_a,T_a),c_HOL_Oabs(V_b,T_a),T_a) ) ).
cnf(cls_SetsAndFunctions_Oset__one__times_0,axiom,
( ~ class_OrderedGroup_Ocomm__monoid__mult(T_a)
| c_SetsAndFunctions_Oelt__set__times(c_1,V_y,T_a) = V_y ) ).
cnf(cls_SetsAndFunctions_Oset__zero__plus_0,axiom,
( ~ class_OrderedGroup_Ocomm__monoid__add(T_a)
| c_SetsAndFunctions_Oelt__set__plus(c_0,V_y,T_a) = V_y ) ).
cnf(cls_conjecture_0,negated_conjecture,
v_c != c_0 ).
cnf(cls_conjecture_1,negated_conjecture,
~ c_lessequals(c_HOL_Oabs(v_f(v_x(V_U)),t_a),c_times(V_U,c_times(c_HOL_Oabs(v_c,t_a),c_HOL_Oabs(v_f(v_x(V_U)),t_a),t_a),t_a),t_a) ).
cnf(tfree_tcs,negated_conjecture,
class_Ring__and__Field_Oordered__field(t_a) ).
%------------------------------------------------------------------------------