TPTP Problem File: ANA005-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ANA005-4 : TPTP v9.0.0. Released v1.0.0.
% Domain : Analysis
% Problem : The sum of two continuous functions is continuous
% Version : [Ble90] axioms : Incomplete.
% English : A lemma formed by adding in some resolvants and taking out
% the corresponding clauses.
% Refs : [Ble90] Bledsoe (1990), Challenge Problems in Elementary Calcu
% : [Ble92] Bledsoe (1992), Email to G. Sutcliffe
% Source : [Ble92]
% Names : Problem 4 [Ble90]
% : p4.lop [SETHEO]
% Status : Unknown
% Rating : 1.00 v2.0.0
% Syntax : Number of clauses : 24 ( 6 unt; 4 nHn; 15 RR)
% Number of literals : 48 ( 0 equ; 21 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 13 ( 13 usr; 3 con; 0-2 aty)
% Number of variables : 48 ( 2 sgn)
% SPC : CNF_UNK_RFO_NEQ_NHN
% Comments : Based on the theorem in calculus that the sum of two continuous
% functions is continuous.
% : [TUM] provided some input to this problem.
%--------------------------------------------------------------------------
%----|X + Y| <= |X| + |Y|.
%----Clause 8
cnf(absolute_sum_less_or_equal_sum_of_absolutes1,axiom,
less_or_equalish(absolute(add(X,Y)),add(absolute(X),absolute(Y))) ).
%----Clause 9.1
cnf(minimum2,axiom,
less_or_equalish(minimum(X,Y),X) ).
%----Clause 9.2
cnf(minimum4,axiom,
( ~ less_or_equalish(X,Y)
| less_or_equalish(X,minimum(X,Y)) ) ).
%----Clause 10.1
cnf(minimum6,axiom,
less_or_equalish(minimum(X,Y),Y) ).
%----Clause 10.2
cnf(minimum8,axiom,
( ~ less_or_equalish(Y,X)
| less_or_equalish(Y,minimum(X,Y)) ) ).
%----Clause 11.3
cnf(less_or_equal_sum_of_halves,axiom,
( ~ less_or_equalish(X,half(Z))
| ~ less_or_equalish(Y,half(Z))
| less_or_equalish(add(X,Y),Z) ) ).
%----Clause 12
cnf(zero_and_half,axiom,
( less_or_equalish(X,n0)
| ~ less_or_equalish(half(X),n0) ) ).
%----Clause 14
cnf(commutativity_of_less_or_equal,axiom,
( less_or_equalish(X,Y)
| less_or_equalish(Y,X) ) ).
%----Clause 15
cnf(transitivity_of_less_or_equal,axiom,
( ~ less_or_equalish(X,Y)
| ~ less_or_equalish(Y,Z)
| less_or_equalish(X,Z) ) ).
%----Clause 15.1 omitted - it's the same as Clause 15
%----Clause 16
cnf(commutativity_of_add,axiom,
equalish(add(X,Y),add(Y,X)) ).
%----Clause 17
cnf(associativity_of_add,axiom,
equalish(add(add(X,Y),Z),add(X,add(Y,Z))) ).
%----Clause 20 = symmetry
cnf(symmetry,axiom,
( ~ equalish(X,Y)
| equalish(Y,X) ) ).
%----Clause 21 = transitivity
cnf(transitivity,axiom,
( ~ equalish(X,Y)
| ~ equalish(Y,Z)
| equalish(X,Z) ) ).
%----Clause 22
cnf(less_or_equal_substitution1,axiom,
( ~ equalish(X,Z)
| ~ less_or_equalish(X,Y)
| less_or_equalish(Z,Y) ) ).
%----Clause 24
cnf(absolute_substitution,axiom,
( ~ equalish(X,Z)
| equalish(absolute(X),absolute(Z)) ) ).
%----Clause 25
cnf(add_substitution1,axiom,
( ~ equalish(X,Z)
| equalish(add(X,Y),add(Z,Y)) ) ).
%----Clause 26
cnf(add_substitution2,axiom,
( ~ equalish(Y,Z)
| equalish(add(X,Y),add(X,Z)) ) ).
%----Clause 1
cnf(clause_1,hypothesis,
( less_or_equalish(Epsilon,n0)
| ~ less_or_equalish(delta_1(Epsilon),n0) ) ).
%----Clause 2
cnf(clause_2,hypothesis,
( less_or_equalish(Epsilon,n0)
| ~ less_or_equalish(delta_2(Epsilon),n0) ) ).
%----Clause 3
cnf(clause_3,hypothesis,
( less_or_equalish(Epsilon,n0)
| ~ less_or_equalish(absolute(add(Z,negate(a_real_number))),delta_1(Epsilon))
| less_or_equalish(absolute(add(f(Z),negate(f(a_real_number)))),Epsilon) ) ).
%----Clause 4
cnf(clause_4,hypothesis,
( less_or_equalish(Epsilon,n0)
| ~ less_or_equalish(absolute(add(Z,negate(a_real_number))),delta_2(Epsilon))
| less_or_equalish(absolute(add(g(Z),negate(g(a_real_number)))),Epsilon) ) ).
%----Clause 5
cnf(clause_5,hypothesis,
~ less_or_equalish(epsilon_0,n0) ).
%----Clause 6
cnf(clause_6,hypothesis,
( less_or_equalish(Delta,n0)
| less_or_equalish(absolute(add(xs(Delta),negate(a_real_number))),Delta) ) ).
%----Clause 7
cnf(clause_7,negated_conjecture,
( less_or_equalish(Delta,n0)
| ~ less_or_equalish(absolute(add(add(f(xs(Delta)),g(xs(Delta))),add(negate(f(a_real_number)),negate(g(a_real_number))))),epsilon_0) ) ).
%--------------------------------------------------------------------------