TPTP Problem File: ANA005-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA005-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : The sum of two continuous functions is continuous
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 1.00 v7.3.0
% Syntax : Number of clauses : 25 ( 25 unt; 0 nHn; 2 RR)
% Number of literals : 25 ( 25 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 9 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 23 ( 23 usr; 8 con; 0-4 aty)
% Number of variables : 44 ( 3 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from ANA005-1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq3(A,A,B,C) = B ).
cnf(ifeq_axiom_001,axiom,
ifeq2(A,A,B,C) = B ).
cnf(ifeq_axiom_002,axiom,
ifeq(A,A,B,C) = B ).
cnf(right_identity,axiom,
add(X,n0) = X ).
cnf(left_identity,axiom,
add(n0,X) = X ).
cnf(transitivity_of_less_than,axiom,
ifeq3(less_than(Y,Z),true,ifeq3(less_than(X,Y),true,less_than(X,Z),true),true) = true ).
cnf(axiom_2_1,axiom,
ifeq3(less_than(n0,Y),true,ifeq3(less_than(n0,X),true,less_than(n0,minimum(X,Y)),true),true) = true ).
cnf(axiom_2_2,axiom,
ifeq3(less_than(n0,Y),true,ifeq3(less_than(n0,X),true,less_than(minimum(X,Y),X),true),true) = true ).
cnf(axiom_2_3,axiom,
ifeq3(less_than(n0,Y),true,ifeq3(less_than(n0,X),true,less_than(minimum(X,Y),Y),true),true) = true ).
cnf(axiom_3,axiom,
ifeq3(less_than(Y,half(Xa)),true,ifeq3(less_than(X,half(Xa)),true,less_than(add(X,Y),Xa),true),true) = true ).
cnf(c_17,axiom,
ifeq3(less_than(add(absolute(X),absolute(Y)),Xa),true,less_than(absolute(add(X,Y)),Xa),true) = true ).
cnf(axiom_5,axiom,
add(add(X,Y),Z) = add(X,add(Y,Z)) ).
cnf(axiom_6_1,axiom,
add(X,Y) = add(Y,X) ).
cnf(axiom_6_2,axiom,
ifeq3(less_than(n0,Xa),true,less_than(n0,half(Xa)),true) = true ).
cnf(axiom_7,axiom,
ifeq3(less_than(n0,Xa),true,less_than(n0,half(Xa)),true) = true ).
cnf(axiom_8,axiom,
minus(add(X,Y)) = add(minus(X),minus(Y)) ).
cnf(c_10,negated_conjecture,
ifeq3(less_than(n0,X),true,less_than(n0,fp31(X)),true) = true ).
cnf(c_11,negated_conjecture,
ifeq3(less_than(absolute(add(Y,minus(a))),fp31(X)),true,ifeq3(less_than(n0,X),true,less_than(absolute(add(f(Y),minus(l1))),X),true),true) = true ).
cnf(c_12,negated_conjecture,
ifeq3(less_than(n0,X),true,less_than(n0,fp32(X)),true) = true ).
cnf(c_13,negated_conjecture,
ifeq3(less_than(absolute(add(Y,minus(a))),fp32(X)),true,ifeq3(less_than(n0,X),true,less_than(absolute(add(g(Y),minus(l2))),X),true),true) = true ).
cnf(c_14,negated_conjecture,
less_than(n0,b) = true ).
cnf(c_15,negated_conjecture,
ifeq3(less_than(n0,X),true,less_than(absolute(add(fp33(X),minus(a))),X),true) = true ).
cnf(reflexivity_of_less_than,axiom,
ifeq2(less_than(X,X),true,a2,b2) = b2 ).
cnf(c_16,negated_conjecture,
ifeq(tuple(less_than(n0,X),less_than(absolute(add(add(f(fp33(X)),g(fp33(X))),minus(add(l1,l2)))),b)),tuple(true,true),a2,b2) = b2 ).
cnf(goal,negated_conjecture,
a2 != b2 ).
%------------------------------------------------------------------------------