TPTP Problem File: ANA003-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ANA003-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Analysis
% Problem : Lemma 1 for the sum of two continuous functions is continuous
% Version : [MOW76] axioms : Incomplete.
% English : A lemma formed by adding in some resolvants and taking out
% the corresponding clauses.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [ANL]
% Names : BL1 [MOW76]
% : prob1.ver1.in [ANL]
% Status : Unsatisfiable
% Rating : 0.47 v9.0.0, 0.55 v8.2.0, 0.57 v8.1.0, 0.50 v6.2.0, 0.67 v6.1.0, 0.86 v6.0.0, 0.78 v5.5.0, 0.88 v5.4.0, 0.94 v5.3.0, 0.90 v5.2.0, 0.69 v5.1.0, 0.75 v5.0.0, 0.73 v4.0.1, 0.71 v3.4.0, 0.60 v3.3.0, 0.33 v3.1.0, 0.67 v2.7.0, 0.50 v2.6.0, 0.43 v2.5.0, 0.57 v2.4.0, 0.86 v2.3.0, 1.00 v2.0.0
% Syntax : Number of clauses : 17 ( 4 unt; 0 nHn; 15 RR)
% Number of literals : 37 ( 0 equ; 22 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 15 ( 15 usr; 5 con; 0-2 aty)
% Number of variables : 27 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments : No natural language descriptions are available.
% : Contributed to the ANL library by Woody Bledsoe.
% : equalish/2 is pure, but that's how it is in the source.
%--------------------------------------------------------------------------
%----Axiom 1
cnf(right_identity,axiom,
equalish(add(X,n0),X) ).
cnf(left_identity,axiom,
equalish(add(n0,X),X) ).
cnf(reflexivity_of_less_than,axiom,
~ less_than(X,X) ).
cnf(transitivity_of_less_than,axiom,
( ~ less_than(X,Y)
| ~ less_than(Y,Z)
| less_than(X,Z) ) ).
%----Axiom 2
cnf(axiom_2_1,axiom,
( ~ less_than(n0,X)
| ~ less_than(n0,Y)
| less_than(n0,minimum(X,Y)) ) ).
cnf(axiom_2_2,axiom,
( ~ less_than(n0,X)
| ~ less_than(n0,Y)
| less_than(minimum(X,Y),X) ) ).
cnf(axiom_2_3,axiom,
( ~ less_than(n0,X)
| ~ less_than(n0,Y)
| less_than(minimum(X,Y),Y) ) ).
%----Axiom 3
cnf(axiom_3,axiom,
( ~ less_than(X,half(Xa))
| ~ less_than(Y,half(Xa))
| less_than(add(X,Y),Xa) ) ).
%----Axiom 4
cnf(c_17,axiom,
( ~ less_than(add(absolute(X),absolute(Y)),Xa)
| less_than(absolute(add(X,Y)),Xa) ) ).
%----Axiom 7
cnf(axiom_7,axiom,
( ~ less_than(n0,Xa)
| less_than(n0,half(Xa)) ) ).
%----Clauses from the problem.
%----Theorem clauses
cnf(c_10,negated_conjecture,
( ~ less_than(n0,X)
| less_than(n0,fp31(X)) ) ).
cnf(c_11,negated_conjecture,
( ~ less_than(n0,X)
| ~ less_than(absolute(add(Y,minus(a))),fp31(X))
| less_than(absolute(add(f(Y),minus(l1))),X) ) ).
cnf(c_12,negated_conjecture,
( ~ less_than(n0,X)
| less_than(n0,fp32(X)) ) ).
cnf(c_13,negated_conjecture,
( ~ less_than(n0,X)
| ~ less_than(absolute(add(Y,minus(a))),fp32(X))
| less_than(absolute(add(g(Y),minus(l2))),X) ) ).
cnf(c_14,negated_conjecture,
less_than(n0,b) ).
cnf(c_15,negated_conjecture,
( ~ less_than(n0,X)
| less_than(absolute(add(fp33(X),minus(a))),X) ) ).
cnf(c_16,negated_conjecture,
( ~ less_than(n0,X)
| ~ less_than(add(absolute(add(f(fp33(X)),minus(l1))),absolute(add(g(fp33(X)),minus(l2)))),b) ) ).
%--------------------------------------------------------------------------