TPTP Problem File: ANA003-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : ANA003-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Analysis
% Problem : Lemma 1 for the sum of two continuous functions is continuous
% Version : [MOW76] axioms : Incomplete > Augmented > Complete.
% English : A lemma formed by adding in some resolvants and taking out
% the corresponding clauses.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [ANL]
% Names : prob1.ver2.in [ANL]
% Status : Unsatisfiable
% Rating : 0.69 v9.0.0, 0.81 v8.2.0, 0.83 v8.1.0, 0.56 v7.5.0, 0.70 v7.4.0, 0.56 v7.3.0, 0.67 v7.2.0, 0.62 v7.1.0, 0.71 v6.3.0, 0.50 v6.2.0, 0.33 v6.1.0, 0.60 v6.0.0, 0.78 v5.5.0, 0.94 v5.4.0, 0.87 v5.3.0, 0.92 v5.2.0, 0.88 v5.1.0, 0.86 v5.0.0, 0.71 v4.1.0, 0.89 v4.0.1, 0.83 v3.3.0, 0.71 v3.2.0, 0.86 v3.1.0, 0.67 v2.6.0, 0.71 v2.5.0, 0.60 v2.4.0, 0.83 v2.3.0, 1.00 v2.0.0
% Syntax : Number of clauses : 21 ( 7 unt; 0 nHn; 16 RR)
% Number of literals : 42 ( 5 equ; 23 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 15 ( 15 usr; 5 con; 0-2 aty)
% Number of variables : 35 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : No natural language descriptions are available.
% : Contributed to the ANL library by Woody Bledsoe.
%--------------------------------------------------------------------------
%----Include limits axioms
include('Axioms/ANA001-0.ax').
%--------------------------------------------------------------------------
%----Theorem clauses
cnf(c_10,negated_conjecture,
( ~ less_than(n0,X)
| less_than(n0,fp31(X)) ) ).
cnf(c_11,negated_conjecture,
( ~ less_than(n0,X)
| ~ less_than(absolute(add(Y,minus(a))),fp31(X))
| less_than(absolute(add(f(Y),minus(l1))),X) ) ).
cnf(c_12,negated_conjecture,
( ~ less_than(n0,X)
| less_than(n0,fp32(X)) ) ).
cnf(c_13,negated_conjecture,
( ~ less_than(n0,X)
| ~ less_than(absolute(add(Y,minus(a))),fp32(X))
| less_than(absolute(add(g(Y),minus(l2))),X) ) ).
cnf(c_14,negated_conjecture,
less_than(n0,b) ).
cnf(c_15,negated_conjecture,
( ~ less_than(n0,X)
| less_than(absolute(add(fp33(X),minus(a))),X) ) ).
cnf(c_16,negated_conjecture,
( ~ less_than(n0,X)
| ~ less_than(add(absolute(add(f(fp33(X)),minus(l1))),absolute(add(g(fp33(X)),minus(l2)))),b) ) ).
%--------------------------------------------------------------------------