TPTP Problem File: ANA001-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ANA001-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Analysis
% Problem : Attaining minimum (or maximum) value
% Version : [WB87] axioms.
% English : A continuous function f in a closed real interval [a,b]
% attains its minimum (or maximum) in this interval.
% Refs : [WB87] Wang & Bledsoe (1987), Hierarchical Deduction
% Source : [WB87]
% Names : AM8 [WB87]
% Status : Unknown
% Rating : 1.00 v2.0.0
% Syntax : Number of clauses : 18 ( 3 unt; 3 nHn; 16 RR)
% Number of literals : 41 ( 0 equ; 21 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-1 aty)
% Number of variables : 23 ( 0 sgn)
% SPC : CNF_UNK_RFO_NEQ_NHN
% Comments : Michael Raskin claims this is Satisfiable, and that the model
% has to be countable or larger. Email Geoff for details.
%------------------------------------------------------------------------------
cnf(refelxivity,axiom,
less_than_or_equal(X,X) ).
cnf(totality,axiom,
( less_than_or_equal(X,Y)
| less_than_or_equal(Y,X) ) ).
cnf(transitivity,axiom,
( less_than_or_equal(X,Z)
| ~ less_than_or_equal(X,Y)
| ~ less_than_or_equal(Y,Z) ) ).
cnf(function,hypothesis,
( less_than_or_equal(f(X),f(Y))
| ~ less_than_or_equal(X,Y)
| ~ less_than_or_equal(Y,X) ) ).
cnf(in_interval,hypothesis,
( in_interval(Lower,X,Upper)
| ~ less_than_or_equal(Lower,X)
| ~ less_than_or_equal(X,Upper) ) ).
cnf(interval1,hypothesis,
less_than_or_equal(lower_bound,extreme_point) ).
cnf(interval2,hypothesis,
less_than_or_equal(extreme_point,upper_bound) ).
cnf(below_extreme_point,hypothesis,
( less_than_or_equal(f(extreme_point),f(X))
| ~ in_interval(lower_bound,X,extreme_point) ) ).
cnf(q_function1,hypothesis,
( less_than_or_equal(X,extreme_point)
| ~ in_interval(lower_bound,X,upper_bound)
| less_than_or_equal(lower_bound,q(X)) ) ).
cnf(q_function2,hypothesis,
( less_than_or_equal(X,extreme_point)
| ~ in_interval(lower_bound,X,upper_bound)
| ~ less_than_or_equal(f(X),q(X)) ) ).
cnf(q_function3,hypothesis,
( less_than_or_equal(X,extreme_point)
| ~ in_interval(lower_bound,X,upper_bound)
| less_than_or_equal(q(X),X) ) ).
cnf(h_function1,hypothesis,
( less_than_or_equal(lower_bound,h(X))
| ~ in_interval(lower_bound,X,upper_bound) ) ).
cnf(h_function2,hypothesis,
( less_than_or_equal(h(X),upper_bound)
| ~ in_interval(lower_bound,X,upper_bound) ) ).
cnf(h_function3,hypothesis,
( less_than_or_equal(f(h(X)),f(X))
| ~ in_interval(lower_bound,X,upper_bound) ) ).
cnf(h_function4,hypothesis,
( less_than_or_equal(h(X),Y)
| ~ in_interval(lower_bound,X,upper_bound)
| ~ in_interval(lower_bound,Y,upper_bound)
| ~ less_than_or_equal(f(Y),f(X)) ) ).
cnf(k_function1,hypothesis,
( ~ in_interval(lower_bound,X,upper_bound)
| less_than_or_equal(lower_bound,k(X)) ) ).
cnf(k_function2,hypothesis,
( ~ in_interval(lower_bound,X,upper_bound)
| less_than_or_equal(k(X),upper_bound) ) ).
cnf(prove_something,negated_conjecture,
( ~ less_than_or_equal(f(X),f(k(X)))
| ~ in_interval(lower_bound,X,upper_bound) ) ).
%------------------------------------------------------------------------------