TPTP Problem File: ALG309-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ALG309-1 : TPTP v9.0.0. Released v4.1.0.
% Domain : General Algebra
% Problem : Random graph 7, nu5 polymorphism
% Version : Especial.
% English :
% Refs : [Sta09] Stanovsky (2009), Email to Geoff Sutcliffe
% Source : [Sta09]
% Names : gpoly7 [Sta09]
% Status : Satisfiable
% Rating : 0.67 v9.0.0, 0.70 v8.2.0, 0.80 v8.1.0, 0.75 v7.5.0, 0.89 v7.4.0, 0.82 v7.3.0, 0.89 v7.1.0, 0.88 v7.0.0, 0.86 v6.4.0, 0.71 v6.3.0, 0.75 v6.2.0, 1.00 v6.1.0, 0.89 v6.0.0, 0.86 v5.5.0, 0.88 v5.4.0, 0.90 v5.3.0, 0.89 v5.2.0, 0.90 v5.0.0, 0.89 v4.1.0
% Syntax : Number of clauses : 58 ( 56 unt; 1 nHn; 52 RR)
% Number of literals : 68 ( 26 equ; 40 neg)
% Maximal clause size : 6 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 6 con; 0-5 aty)
% Number of variables : 21 ( 5 sgn)
% SPC : CNF_SAT_RFO_EQU_NUE
% Comments : About finding a certain type of polymorphism on the graph, but the
% nature of the problem is actually algebraic rather than graph
% theoretical.
%------------------------------------------------------------------------------
cnf(polynu5_01,axiom,
t(Y,X,X,X,X) = X ).
cnf(polynu5_02,axiom,
t(X,Y,X,X,X) = X ).
cnf(polynu5_03,axiom,
t(X,X,Y,X,X) = X ).
cnf(polynu5_04,axiom,
t(X,X,X,Y,X) = X ).
cnf(polynu5_05,axiom,
t(X,X,X,X,Y) = X ).
cnf(preserves,axiom,
( ~ gr(X0,X1)
| ~ gr(X2,X3)
| ~ gr(X4,X5)
| ~ gr(X6,X7)
| ~ gr(X8,X9)
| gr(t(X0,X2,X4,X6,X8),t(X1,X3,X5,X7,X9)) ) ).
cnf(graph_n0_n0,axiom,
gr(n0,n0) ).
cnf(graph_n0_n1,axiom,
~ gr(n0,n1) ).
cnf(graph_n0_n2,axiom,
~ gr(n0,n2) ).
cnf(graph_n0_n3,axiom,
~ gr(n0,n3) ).
cnf(graph_n0_n4,axiom,
~ gr(n0,n4) ).
cnf(graph_n0_n5,axiom,
~ gr(n0,n5) ).
cnf(graph_n1_n0,axiom,
gr(n1,n0) ).
cnf(graph_n1_n1,axiom,
gr(n1,n1) ).
cnf(graph_n1_n2,axiom,
gr(n1,n2) ).
cnf(graph_n1_n3,axiom,
~ gr(n1,n3) ).
cnf(graph_n1_n4,axiom,
~ gr(n1,n4) ).
cnf(graph_n1_n5,axiom,
gr(n1,n5) ).
cnf(graph_n2_n0,axiom,
gr(n2,n0) ).
cnf(graph_n2_n1,axiom,
~ gr(n2,n1) ).
cnf(graph_n2_n2,axiom,
~ gr(n2,n2) ).
cnf(graph_n2_n3,axiom,
~ gr(n2,n3) ).
cnf(graph_n2_n4,axiom,
~ gr(n2,n4) ).
cnf(graph_n2_n5,axiom,
gr(n2,n5) ).
cnf(graph_n3_n0,axiom,
~ gr(n3,n0) ).
cnf(graph_n3_n1,axiom,
gr(n3,n1) ).
cnf(graph_n3_n2,axiom,
gr(n3,n2) ).
cnf(graph_n3_n3,axiom,
~ gr(n3,n3) ).
cnf(graph_n3_n4,axiom,
gr(n3,n4) ).
cnf(graph_n3_n5,axiom,
~ gr(n3,n5) ).
cnf(graph_n4_n0,axiom,
~ gr(n4,n0) ).
cnf(graph_n4_n1,axiom,
gr(n4,n1) ).
cnf(graph_n4_n2,axiom,
~ gr(n4,n2) ).
cnf(graph_n4_n3,axiom,
~ gr(n4,n3) ).
cnf(graph_n4_n4,axiom,
~ gr(n4,n4) ).
cnf(graph_n4_n5,axiom,
~ gr(n4,n5) ).
cnf(graph_n5_n0,axiom,
gr(n5,n0) ).
cnf(graph_n5_n1,axiom,
gr(n5,n1) ).
cnf(graph_n5_n2,axiom,
~ gr(n5,n2) ).
cnf(graph_n5_n3,axiom,
gr(n5,n3) ).
cnf(graph_n5_n4,axiom,
gr(n5,n4) ).
cnf(graph_n5_n5,axiom,
gr(n5,n5) ).
cnf(elems_n0_n1,axiom,
n0 != n1 ).
cnf(elems_n0_n2,axiom,
n0 != n2 ).
cnf(elems_n0_n3,axiom,
n0 != n3 ).
cnf(elems_n0_n4,axiom,
n0 != n4 ).
cnf(elems_n0_n5,axiom,
n0 != n5 ).
cnf(elems_n1_n2,axiom,
n1 != n2 ).
cnf(elems_n1_n3,axiom,
n1 != n3 ).
cnf(elems_n1_n4,axiom,
n1 != n4 ).
cnf(elems_n1_n5,axiom,
n1 != n5 ).
cnf(elems_n2_n3,axiom,
n2 != n3 ).
cnf(elems_n2_n4,axiom,
n2 != n4 ).
cnf(elems_n2_n5,axiom,
n2 != n5 ).
cnf(elems_n3_n4,axiom,
n3 != n4 ).
cnf(elems_n3_n5,axiom,
n3 != n5 ).
cnf(elems_n4_n5,axiom,
n4 != n5 ).
cnf(elems,axiom,
( X = n0
| X = n1
| X = n2
| X = n3
| X = n4
| X = n5 ) ).
%------------------------------------------------------------------------------